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Abstract

Efficient operation of a hybrid-electric propulsion system (HEPS) powering a small
remotely-piloted aircraft (RPA) requires that a controller have accurate and detailed
engine and electric motor performance data. Many small internal combustion engines
(ICEs) currently used on various small RPA were designed for use by the recreational
hobbyist radio-control (R/C) aircraft market. Often, the manufacturers of these engines
do not make accurate and reliable detailed engine performance data available for their
engines. A dynamometer testing stand was assembled to test various small ICEs. These
engines were tested with automotive unleaded gasoline (the manufacturer’s
recommended fuel) using the dynamometer setup. Torque, engine speed and fuel flow
measurements were taken at varying load and throttle settings. Power and specific fuel
consumption (SFC) data were cal culated from these measurements. Engine performance
maps were generated in which contours of SFC were mapped on a mean effective
pressure (MEP) versus engine speed plot. These performance maps are to be utilized for
performance testing of the controller and integrated HEPS in further research. Further
follow-on research and development will be done to complete the goal of building a
prototype hybrid-electric remotely piloted aircraft (HE-RPA) for flight testing. Minimum
BSFC for the Honda GX 35 engine was found to be 383.6 g/kW-hr (0.6307 Ibm/hp:hr) at
4500 RPM and 60% throttle. The Honda GX35 was overall the better fit for

incorporation into the HE-RPA.
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SMALL INTERNAL COMBUSTION ENGINE TESTING FOR A HYBRID-
ELECTRIC REMOTELY-PILOTED AIRCRAFT

I. Introduction

1. Background

Today’ s battlefield has found a tremendous amount of use for small remotely-piloted
aircraft (RPA). Small RPA are specified as those having maximum gross takeoff weight
of lessthan 55 pounds [1]. The size and portability of these assets have allowed
individual service members to conduct numerous types of missions. These missions
typically include intelligence, surveillance and reconnaissance (I1SR) and target
acquisition. Non-military uses for small RPAs include border monitoring, chemical,
biological and radiological detection, weather data collection, and scientific research [2].
The application of persistenceis critical to the effectiveness of these missions.
Persistence is the principal attribute of RPA over manned aircraft [3], and a RPA’srange
and endurance capabilities are analogous to persistence. These capabilities are directly
linked to the performance of the RPA’ s propulsion system.

Currently, small RPA utilize numerous types of propulsion systems. Rechargeable
lithium-ion batteries and an electric motor (EM) power the less than five pound United
States Air Force (USAF) RQ-11B Raven RPA to achieve an endurance of 1-1.5 hours
[4]. TheWasp Ill isaone pound RPA. It ispowered by an electric motor aswell, and it
has an endurance of 45 minutes[5]. The Naval Research Laboratory’slon Tiger RPA
weighs 37 pounds and employs a 0.550 kW (0.75 hp) hydrogen fuel cell enabling
demonstration flights of greater than twenty hours[6].

1



The internal combustion engine (ICE) has been a prolific source of power for hobby
radio-controlled (R/C) model aircraft. Along with many other R/C model aircraft
components, small |CEs have found ahomein RPA. The Scan Eagle RPA has a
maximum takeoff weight of 44 pounds and uses a single cylinder two-stroke ICE
producing 1.5-1.9 peak horsepower [7]. The Scan Eagle has endurance capabilities of
greater than 20 hours [8] but payload is sacrificed for additional fuel storage. Propulsion
viaan ICE still provides an excellent platform for achieving great endurance for small
RPA, when cost is considered. Using an | CE avoids the challenges of storing and
transporting hydrogen used in some fuel cells.

Most small RPA using the aforementioned non-I CE propulsion sources, currently
provide less endurance but are superior to | CEs in the aspect of acoustic signature. A key
component to | SR and target acquisition is executing the mission while remaining
undetected and unbeknownst by the objective. Minimizing the acoustic signature of an
operating RPA is crucial to achieving this aspect of stealth. Inrecent years, it has been
suggested and shown by Harmon [9] and Hiserote [10] that a parallel hybrid-electric
propulsion system (HEPS) composed of an ICE, EM and batteries is aviable propulsion
system for small RPA. The use of a HEPS on a small RPA can improve fuel
consumption and increase range while reducing acoustic and thermal signatures. The
central focus, of the overall work that this effort falls under, is taking Harmon and
Hiserote' s conceptual design of a hybrid-electric RPA (HE-RPA) and developing a

prototype.



2. Motivation and Problem Statement

Developing a propulsion system that maximizes endurance and range capability isa
challenge facing small RPA design because of the desire for persistent ISR. Accurate
and reliable performance maps for an engine and EM are required (along with a
controller), to optimize the performance of a HEPS on asmall RPA. The engine
performance parameters most critical to a propulsion controller are specific fuel
consumption (SFC), torque, power, and engine speed. The controller references the
engine performance data to decide how the propulsion system as a whole operates. The
controller determines whether to propel the RPA using the EM, ICE, or both in
combination, after referencing the map and utilizing real-time engine speed and possibly
cylinder pressure information. The design of a controller for this project’s hybrid-electric
propulsion is the focus of research done by Greiser [11]. Optimizing the RPA’s entire
propulsion system by properly matching a propeller to the HEPS is another key to
maximizing range and endurance. This propeller matching optimization is the motivation
of Rotramel’s[12] work.

Accurate and reliable performance data from manufacturers and researchers has been
found to be sparse for ICEs producing the required power levels common to small RPA
(one-half to several horsepower). Also, it isnot uncommon for small |CE manufacturers
to inflate advertised peak power ratings for their engines. These small ICEs have been
traditionally used by the R/C hobby aircraft community which usually has little need for
detailed and accurate performance data. Also, due to considerations of the existing
logistical supply chain for supplying fuel to military aircraft, having RPA propulsion

systems capable of running on JP-8 or Diesel fuel is desired by the Department of



Defense (DoD) [13]. Many small RPA currently have engines that run on gasoline or
hobbyist glow fuel (the latter being a mixture of methanol, nitro-methane and oil). For
these reasons, testing a number of small ICEsto establish accurate and reliable
performance parameter measurements for use as a essential part of aHEPSisseen asa
worthy research effort. Also, exploring the capability of running small ICEs on Diesel or
JP-8 fuel is an important part of trying to ease logistical supply chain difficulties for DoD

RPA operation.

3. Objectives

Thisresearch effort’ s goal isto test and compare the engine performance of two
ICEs. The aim of the comparison isto select the better performing engine and determine
the feasibility of the choice for incorporation into the HEPS. Engine performance maps
in which contours of brake specific fuel consumption (BSFC) are mapped on a break
mean effective pressure (BMEP) versus engine speed plot are to be generated. This
effort will compare the BSFC of both engines and provide the data necessary to establish
the ideal operating line (I0L) where the engine will be operated as part of the HEPS. The
engines will be tested with the manufacturer’ s recommended fuel (gasoline in both cases)
aswell asdiesdl fuel. Also, to further determine the better performing engine, a
gualitative analysis will be done in which the operating characteristics of the engines are

compared.

4. Methodology
The research objectives will be achieved through engine testing via an engine test
stand. An engine test stand will be developed using a dynamometer. Initialy, the

4



dynamometer itself will be tested and calibrated. Engine mounts, an engine to
dynamometer coupling, afuel flow system, and a throttle control system must be
designed and built, or purchased. These parts will be installed and integrated together
into afunctioning test stand. Software tools necessary for testing and data analysis must

be devel oped (or otherwise procured) as well.

5. Scope

This effort is limited to testing two possible | CE choices for incorporation into the
HEPS. The entire HEPS will not be tested in this effort; however, building it will bea
side effort of thisresearch. Greiser’s[11] work seeksto test the possible operating
modes of the HEPS to verify controller effectiveness. Time permitting, the engines will
be run and tested on diesel fuel. No development of models to generate performance

maps and engine performance data will be done, although it was initially considered.

6. ThesisOverview

Chapter | introduced the reader to background information concerning the subject
areas this effort isinvolved with. It discussed the objectives of this effort and the
motivation behind achieving these goals. In thisthesis, Chapter Il serves asareview of
applicable research gained from literature. The author sought to first learn about the
fundamentals of hybrid-electric propulsion, ICEs, fuel, and combustion. Current research
and knowledge gainsin small RPA design, HEPS design, | CE testing, and engine
performance modeling was then tackled by the author. Chapter 111 lays out the method in

which the experimental research was conducted. Detailed analysis of research results are



explored in Chapter IV. Lastly, chapter V summarizes results, offers conclusions and

proposes areas for further related research.



[I. LiteratureReview

1. Chapter Overview

There has been considerabl e research and development in the areas of HEPS and
| CE technology for automotive applications. This research has focused on various
aspects of design, manufacture, testing, operation and performance. AsICE testing isthe
main thrust of this effort, this chapter summarizes | CE essentials and discusses research
areas relevant to aforementioned objectives. Information concerning hybrid-electric
propulsion isfirst explored, since the overall goal of this project is developing, designing
and building aHEPS that is incorporated into a small RPA prototype. Also,
fundamentals of combustion fuels are investigated and discussed to better understand
how to effectively operate ICEs on various fuels. One of the initial objectives was to test

the ICEs on heavy fuels, but this was not accomplished due to time constraints.

2. Hybrid-Electric Propulsion

Hybrid-electric propulsion technology is one example of the more general interest
area of hybrid power technology. A hybrid system combines two or more sources
capable of generating power into a single power system. One widespread application of
hybrid technology is in vehicle propulsion. The commonly used term, hybrid-electric,
describes a system that utilizes one or more heat engines together with one or more EMs
in acertain configuration. In propulsive vehicles, hybrid-electric technology is primarily
implemented in one of three principal configurations[14]. The three configurations are a
series configuration, a paralel configuration and a power-split or series-parallel
configuration. The series and parallel configurations are further discussed in the

7



following sections. The power-split configuration is a combination of the other two

configurations and is not expanded on.

2.1. SeriesConfiguration

A heat engine (ICE, gas-turbine, etc.) is used to run a generator in a hybrid-electric
power-train with a series configuration. The generator supplies power to an EM that
propels the vehicles. The generator also provides power (unused by the EM) to an energy
storage system (batteries, capacitors, flywheels, etc.) for future use. A simple diagram of
a hybrid-electric series configuration is shown in Figure 1. A main benefit of a series
configuration is that the engine running the generator can be designed to operate at a
consistent and optimum engine speed. Thisis because the engineisnot directly
mechanically linked to the driving of the vehicle. A drawback to a series configuration is
that the EM must be sized based on the capability to provide the maximum power output
the vehicle requires. Thisleadsto a more massive EM and overall system. Dueto the
weight downside associated with series configurations, they find most use in high-torque,

low-speed, large vehicles like buses, commercial trucks and locomotives [14].

Figure 1: Hybrid-electric series configuration diagram



2.2. Parallel Configuration

In aparale hybrid-electric system, a heat engine and an EM are used in combination
to turn a single driveshaft through individual mechanical linkages. This hybrid
architecture allows for the engine to power the vehicle aone, the EM to power the
vehicle aone or for the engine and the EM to both power the vehicle jointly. A simple
diagram of a hybrid-electric parallel configurationisshownin Figure2. Thethree
major types of parallel hybrid-electric systems are called mild, power-assist and dual -
mode [14]. The types are nominally classified based on the sizing and intended function
of theEM. The EM isrelatively small inamild system. It isused to aid in acceleration
and utilizes regenerative braking to recharge batteries during decelerations. The power-
assist parallel system usesalarger EM and larger energy storage system to aid in vehicle
acceleration and propulsion and can warrant a modest downsizing of the engine [14].
Mild hybrids are often only capable of propelling the vehicle in electric-only mode (in
which the EM singly powers the vehicle) for short distances, if at all. Finaly, the dual-
mode parallel hybrid-electric system utilizes ayet even larger EM and larger energy
storage bank to aid further in vehicle acceleration and propulsion as well as being capable
of extended-range sustained electric-only mode. Also, dual-mode parallel systems allow

for further downsizing of the engine.



Figure 2: Hybrid-electric parallel configuration diagram

Over the last decade, the major thrust behind hybrid-electric technology research and
application has been the automotive industry. Accordingly, the ICE (common to most
automobiles) has been the heat engine of choice for most HEPS designs. Selecting the
appropriate size and type of ICE is critically important for an HEPS and its performance
in vehicle propulsion. Therefore, ICE fundamentals are extensively investigated in the

next section.

3. Internal Combustion Engines

At the dawn of powered flight, the | CE was the sole propulsion source for aircraft.
The ICE was used as the power source to rotate propellers which generated the thrust
necessary for an aircraft to achieve flight. Inthe original eraof powered flight, various
| CE configurations were devel oped to produce sufficient and efficient thrust for aircraft
of the period. Inthe quest for aircraft capable of higher speeds, it was found that

propeller driven aircraft were speed limited. Higher propeller rotational speeds were
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required to create the thrust needed for increased aircraft speed. The result of these
increased speeds, were that the tips of the propeller began to approach the speed of sound
producing shockwaves at the tips and dramatically increasing drag. The ICE powered
propeller aircraft had a speed limit. The invention of the turbojet engine in the 1930s
provided a method of propulsion for aircraft to break the propeller speed limit. The
turbo-jet engine had superior thrust-to-weight properties than the | CE which allowed for
larger aircraft to be built [15]. Advanced turbo-machinery, like the turbo-fan engine and
turbo-prop engine, power awide range of flight regimes. They have relegated the ICE to
power mostly smaller and slower aircraft, whereit is still the most effective propulsive
platform (though fuel-cells and EMs are more efficient). Thus, the ICE is an excellent
source of propulsion for propeller driven small RPA. The growth of small RPA has
increased research in small ICE design and performance.

The ICE isatype of heat engine that develops mechanical power by means of
converting the energy stored in the chemical bonds of fuel [16]. Thischemical energy is
converted to kinetic energy by means of arapid oxidation process[17]. Thisrapid
oxidation is commonly referred to as burning or combustion. The mixture of fuel and
oxidizer (most often air) acts as a working fluid against specific mechanical components
in the engine both before and after combustion. Two magjor types of ICEs are the spark-
ignition (SI) engine (also called the Otto or gasoline/petrol engine) and the compression-
ignition (Cl) engine (also called the Diesel engine). The two engine cycles that either Sl
or Cl engines usually operate with are the two-stroke cycle and the four-stroke cycle.

These two engines and two cycles will be the focus of the next few sections.
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3.1. Engine Componentsand Cycles

The reciprocating ICE’s main features are shown for one cylinder in Figure 3. The
piston travels back and forth through a cylinder, and the piston is attached to a crankshaft
by means of a connecting rod. The linear motion of the piston is translated into rotational

motion through the connection between crankshaft and connecting rod.

T

IDC —— |-----mmmmmmmmmmmmmmmmm e .

BDC —

Figure 3: Cylinder geometry

The piston travels to and from positions of top-dead-center (TDC) and bottom-dead-
center (BDC). The stroke (L) is the distance between TDC and BDC while the bore (B)
represents the diameter of the cylinder. With knowledge of the crank radius (a) and
connecting rod length (1), the position of the piston can be determined at any crank angle

(6). The crank angle is measured as the change in angle of the crankshaft from the
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position of the crankshaft when the piston isat TDC where the crank angleis0°. The
compression ratio (r) is another important feature of cylinder geometry. Compression
ratio represents the ratio of maximum cylinder volume to minimum cylinder volume [16].
The maximum cylinder volume is the sum of displaced cylinder volume (Vy) and cylinder
clearance volume (V.), whereas the minimum cylinder volume is the clearance volume.

In 1876, the first Sl reciprocating engine was successfully operated. It was
developed by Nicolaus A. Otto with his proposed engine cycle comprised of four piston
strokes. This cycle came to be known as the Otto cycle. The intake stroke starts with the
piston at TDC and finishes with the piston located at BDC. A fresh fuel-air mixtureis
ingested into the cylinder during the piston travel of the intake stroke. The compression
stroke happens prior to ignition. Asthe piston moves from the BDC to TDC position, the
fuel-air mixture is compressed, increasing pressure in the process. An expansion or
power stroke, where the piston travels from TDC to BDC, follows spark-ignition
(occurring at some point near TDC) and near constant-volume combustion. Finally, an
exhaust stroke expels the remaining products of the fuel-air mixture combustion from the

cylinder as the piston travels from BDC to TDC.
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Figure 4: Four-stroke operating cycle [18]

Engines operating on the Otto cycle are said to be four-stroke engines. Anillustration of

the stages of the four-stroke operating cycleis shown in Figure 4.

Another dominate type of engine cycle is the two-stroke operating cycle. The

primary advantage of two-stroke engines over the four-stroke variety istheir higher

power output per displaced volume [16]. Thisisdue to the two-stroke variety having one

power stroke per one crankshaft revolution as opposed to the four-stroke engine having

one power stroke per two crankshaft revolutions. The two-stroke cycle only consists of a

compression stroke and a power or expansion stroke. An illustration of the stages of the

two-stroke operating cycle is shown in Figure 5. The two-stroke engine lacks individual

exhaust and intake strokes so its gas exchange processes into and out of the cylinder are

more complex.
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Figure 5: Two-stroke operating cycle [18]

Thissimplicity of design generally leads to two-stroke engines being less massive
compared to four-stroke engines with similar displacement. Lacking the intake and
exhaust stokes, most two-stroke engines don’t have intake and exhaust valves but rather
intake and exhaust ports. To achieve the required gas exchange processes a process
called scavenging isused. In scavenging, afresh fuel-air mixture is taken into the
cylinder through a port in the cylinder wall and exhausts the remaining combustion
products out of the cylinder through another port. By specific positioning of the ports on
the cylinder wall, the traveling piston reveals and covers the intake and exhaust ports at
the most appropriate time. 1n a crankcase scavenged Sl two-stroke engine, the
compression stroke closes both ports as the piston travels from BDC to TDC compressing

the cylinder fuel and air content. Fresh fuel and air enters the crankcase and is pressured
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there first during upward piston travel. Pressurization of the fresh charge isrequired so
that it will have a higher pressure than that of the burnt gases from the previous cycle.
This allows for effective displacement of the burnt gases. In the power stroke, the piston
approaches BDC from TDC (asin the four-stroke cycle). The exhaust port isfirst
uncovered and then the intake port is revealed during piston travel. When the intake port
is uncovered, the pressurized fresh charge enters the cylinder from the crankcase and
most of the burnt gas from the previous cycle is expunged through the exhaust port.
Scavenging results in some of the fresh charge being directly exhausted beforeit is
combusted, as well as leaving some of the burnt gases from the previous cycle in the
cylinder. These losses are much greater in two-stroke engines compared to four-stroke
engines. Thisresultsin two-stroke engines generally being less efficient than four-stroke
engines.

Engines based on both two-stroke and four-stroke cycles find considerable and wide-
ranging use in avariety of applications. Four-stroke engines dominate the passenger
automotive vehicle landscape while, two-stroke engines have been used extensively in
small portable devices such as chainsaws and lawnmowers, smaller vehicles like
snowmobiles and motorcycles, and light aircraft like small RPA. The increased
importance of efficiency, fuel consumption and growing interest in minimizing
environmental impact by reducing engine exhaust emissions have lead to four-stroke
engines becoming more common place in areas that are traditional two-stroke engine
strongholds. The additional cost associated with four-stroke engine manufacture and
power reduction has before limited their introduction into such areas, but the benefits

now sometimes outweigh the negatives. Both engines tested for this research operate
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using the four-stroke cycle. The other large classification of enginesiswhether the

enginerequires Sl or Cl.

3.2. Engine GasCycles
The Sl engine' s defining characteristic is the spark plug. It supplies an electrical
discharge that ignites some of the fuel-air mixture. The ignition gives birth to aturbulent
flame that propagates throughout the cylinder. The fundamental assumption (though not
aways valid) of theideal Sl engine cycleisthat combustion occurs rapidly enough to
effectively occur at constant volume. In addition to the gas cycle having constant volume
heat addition; it is assumed hezat is rejected from the system at constant volume as well.
A pressure versus volume plot for the gasesin an ideal SI Otto cycleis shown in Figure

6, whereas Table 1 summarizes the processes taken place over the cycle in Figure 6.

Pressure

Volume

Figure 6: Sl engine cycle pressure versus volume
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Table 1. Sl engine cycle processes [19]

Cycle Stage Process Description
1to2 isentropic compression
2t03 constant-volume heat addition
3to4 isentropic expansion
4t01 constant-volume heat rejection

The CI engine and cycle has commonly been referred to as the Diesel engine and
cycle. Theideal Diesel cycle operates with the fundamental assumption (though not
always valid) that heat is added to the system (through combustion) at approximately
constant pressure. Thisisillustrated in Figure 7. The Cl engine is most distinguished
from S| engines by its lack of a spark plug for ignition. It relies on spontaneous ignition
of the cylinder fuel-air mixture content. This processis called auto-ignition. Diesel
engines typically have higher compression ratios than that of SI engines. These higher
ratios are needed to compress air in the cylinder to high enough pressures and
temperatures to facilitate auto-ignition. Before the piston reaches TDC, fuel isinjected
into the cylinder and mixes with the compressed air. The fuel-air mixture now has a
temperature and pressure above the fuel’ signition point and it auto-ignites. Auto-
ignition can also occur in Sl engines, but it is undesirable because the engine is not
designed to handle the higher pressures and temperatures. These unfavorable detonations
are commonly called knock, because of the distinctive pinging sound they generate that is

audible to the human ear.
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Table 2: Cl engine cycle processes [19]

Cycle Stage Process Description
1lto?2 isentropic compression
2t03 constant-pressure heat addition
3to4 isentropic expansion
4t01 constant-volume heat rejection

2 3

Pressure

Volume

Figure 7: Cl engine cycle pressure versus volume

3.3. Cylinder Configuration

Sl and CI ICEs come in various cylinder configurations. Most (non-radial) engine
configurations utilize one, two, three, four, five, six, eight, ten and twelve cylinders.
Engine cylinder configuration impacts engine vibration and smoothness because of the
consequences the configuration has on engine balance. Six and eight cylinders are often
aligned in a V-shape which iswell balanced and linearly compact. Six and eight cylinder
engines are also commonly arranged in alinear or straight configuration. The straight
cylinder arrangement provides superior balance for six cylinders but isrelatively long in

comparison to the V-shape configuration. Two cylinder designs are most often arranged
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in aV-shape design or horizontally opposed (boxer) design while four cylinder engines
are commonly in an in-line configuration. Due to the nature of the two-stroke and four-
stroke work cycles, torque spikes are experienced, especially in single cylinder engines.
The ICEsin consideration for use for this thesis are both single cylinder designs. The
implication of single cylinder engine torque spikes on operation and testing were found to
be significant. The torque spikes can damage the engine-dynamometer coupling or the
dynamometer itself. In study of asmall single cylinder four-stroke I CE, Wilson [20]
found that vibrations from the torque spikes caused numerous couplesto fail. This
limited testing to engine speeds under 6000 Revolutions Per Minute (RPM). This effort
will seek to find or develop a dynamometer engine couple sufficient for testing at higher
engine speeds. Wilson suggested developing a method for dampening out engine test
stand vibrations and using alarger coupling. The couple used by Wilson that limited

testing to 6000 RPM was rated for torque 37 times that of what the test engine averaged.

3.4. Performance

Engine performance is central to this research. The two most common figures of
merit are torque (T) and power (P). However, the engine performance parameters that
allow for equivalent comparison between engines of varying size are MEP and SFC [16].
Mean effective pressure (MEP) isthe amount of work per cycle (W,) divided by the
cylinder volume (V;) displaced per cycle[16]. Equation 1 shows the MEP relation.
Equation 2 shows that I/, is found by multiplying power times the number of crank
revolutions for each power stroke (ng) and then dividing by the crankshaft rotational

speed (N). The crankshaft rotational speed is commonly referred to as engine speed.
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We
MEP = — 1
Va

Png
M/C=T=T'nR2T[ 2

MEP is often expressed in units of kPaor Ib/in>. MEP isdirectly related to torque. This
relation is shown by substituting the expression for W, in Equation 2 into Equation 1.
Torgue is the engine parameter most readily measured via a dynamometer. Engine speed

is also measured in a dynamometer apparatus. Power is calculated from torque and

angular speed measurements by means of Equation 3.

P = 2nNT 3

Power is most often expressed in units of kW and hp while torqueis given in N-m and
Ibf-ft. Anengine’soutput power and torque values are crucial to ensuring the engine can
sufficiently supply the work demand of the desired function it is supporting. For most
engine applications, how effectively the engine can deliver work is also very important.
This effectiveness in converting the chemical energy stored in fuel to useful work is

described by relating fuel consumption to power output. S=C isthe fuel mass flow (my)

rate divided by power output.
.
_ny 4
SFC b

S-Cisgiven in units of g/kW-h and Ibm/hp-h. To supplement S-C, adimensionless

parameter that links engine output to required fuel energy input was developed as a
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means to better compare engines. Fuel energy refers to the energy possibly available by
combustion of the supplied fuel. It isequivaent to the mass of fuel supplied to the
engine per cycle (m,) multiplied by the chemical heating value intrinsic to the fuel (Qpy).
The parameter is an empirical engine efficiency called fuel conversion efficiency () or
thermal efficiency. The efficiency is shown initsdifferent formsin Equation 5.

W, P 1

s mQuy  MsQuy  SFC Quy

This efficiency parameter assumes that the fuel energy supplied to the engineis entirely
converted to thermal energy. This however, isnot the usual case because the assumption
requires complete combustion of the fuel with air. Of vital importance to the combustion

processistheratio of air-to-fuel (A/F) or fuel-to-air (F/A) shown in Equations 6 and 7.

A/F _Ma

(/)_mf 6

(Fa)y = 7
Mmq

Even with a stoichiometric (chemically balanced) A/F mixture or an oxygen rich mixture
100% complete oxidation of the fuel isnot achieved. Thisis due to the complex
mechanisms involved with the hundreds of elementary reactions that occur with hydro-
carbon fuel combustion [21]. Volumetric efficiency (n,,) is aparameter developed to
measure and engine’ s ability to induct air into the cylinder. It is not used with two-stroke
engines because of the cycle slack of adiscrete process for air intake. It isdescribed by

the ratio of air's volumetric flow rate into the engine (1, ;) by the rate of volume
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displaced by the piston. Volumetric efficiency pa,;j represents the ambient inlet air density

and is shown in Equation 8.

21,
pa,inN

My 8

Engine power, torque and MEP can be expressed in terms of the earlier introduced

parameters. These relations (Equations 9 to 12) better show how and what power and

torque correlate to.
P= % (four — stroke cycle) 9
P = %Apfp (two — stroke cycle) 10
T = Mil; Va (four — stroke cycle) 11
T = ME;:T Va (two — stroke cycle) 12

Power isdirectly proportional to piston area (A,) and mean piston speed (§p) while torque
is proportional to displaced volume. Lastly, MEP’s relationship to these parametersis

shown in Equation 13.

MEP = 1n1,Quypa,; (F/A) 13
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Performance maps that show contours of constant S~C are plotted on a chart of MEP

versus engine speed, are essential for comparing engines of differing size, type and

configuration. Sl and Cl engines operating two-stroke and four-stroke cycles often have

minimal fuel consumption at roughly 60% of the maximum engine speed and 60% of

maximum MEP [19]. Performance maps enable viewing an engine’s performance

characteristics throughout its entire loading and speed range possible. Examples of

performance maps are shown in Figure 8.
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Figure 8: Engine performance map examples (a.) [19] (b.) [16]

The contours of constant S-C create islands of efficiency on the map that clearly show at

what speed and load the engine should be operated at to minimize S-FC and maximize

efficiency. Two secondary but important parameters for engine comparison are engine

specific power and engine specific volume shown in Equations 14 and 15 respectively.



engine weight
g g 14

specific power =
P P rated power

engine volume
15

specific volume =
rated power

Proper comparison requires consistency in the development of engine weight and
volume. What components and secondary items are considered as the engine must be
unvarying. One of the two-stroke engine’' s qualities isits superior specific weight to that
of the four-stroke engine. Two-stroke engines generally weigh less because they are less

complex than four-stroke engines.

3.5. Predictive Modeling

The testing of engines to determine performance parameters is time consuming.
Considerable effort by researchers and industry has been put forth into modeling real
engine operation. Developing accurate modelsis quite involved and challenging because
of the complex and numerous processes involved in an ICE. Models hope to predict
engine behavior over awide range of operating conditions and variables. Thisalows for
evaluating engine concepts and designs without the effort and cost associated with
actually building and testing adesign. Predicting engine performance from fundamental
governing equations alone is quite daunting and most model s devel oped have more
limited objectives[16]. More commonly, models have been devel oped to predict the
separate processes in ICES relating to friction, heat transfer, fluid flow, chemical kinetics,
combustion and turbulence. For example the computer software programs CHEMKIN

and Cantera have been devel oped to model chemical kinetics and related combustion
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processes in reacting flows. Increased computing power has allowed for advancesin
modeling techniques and approaches.

Artificial neural-network models are being used to predict engine performance
parameters and to a'so model individual engine processes. The networks develop a
mathematical function that is composed from different input functions. For input, the
neural-network approach requires a number of experimentally found data points of the
parameters of interest. In one study [22], a neura-network model was developed to
predict the output power of atwo-stroke Sl engine. A conventional simulation model to
predict power was developed using simplified ideal relations with many assumptions.
This power was used as one input into the neural network model. The model aso used
experimentally found data points of power and SFC as functions of measured A/F ratio,
engine speed and throttle position. A/F ratio, engine speed and throttle position were thus
used as input neurons. Using machine training and learning rules, the neural-network
model sought to minimize the error between the model’ s power prediction and the
experimental values of power. This hybrid model approach produces predictions with
decent accuracy and the study suggests the model could be used to predict power for
different engines of similar displacement. The model’s reliance on experimental data and
the variance in engine design, materials and quality could inject significant error
however.

Recently, Menon et a. [23] have |ooked at the performance of small ICEs duein
large part to their increased use and value in small RPA. The study sought to generate a
numerical model of asmall ICE to examine the factors limiting small engine

performance. The model was generated by solving a set of governing equations
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(conservation of energy, mass and species) for the non-combustion portions of the engine
cycle. For thistwo-stroke engine model, a complete mixing scavenging model was
assumed in which fresh charge instantly mixes with the remaining charge (burned gas
products) in the cylinder to form auniform mixture. Models for heat loss and friction
loss were also incorporated. Combustion and gas mixture composition was modeled
using the computer software tool CANTERA. Two sets of ordinary differential equations
(ODEs) were formed and solved for numerically using various solversin MATLAB.
From these solutions, engine performance parameters were solved for by first calculating
work using the 1% Law of Thermodynamics. Experimentally, engine performance data
was measured using an in-house developed dynamometer. The two-stroke engine
specifically looked at was a AP Engines manufactured Y ellowjacket glow-plug two-
stroke engine with 2.83 cm® of displacement. Simulation results were then compared to
performance data cal culated from experimental measurements. Plots of efficiency and
power versus engine speed showed the results did not compare well. A suggested reason
for error isthe scalability of the heat and friction loss models to engines with very small
displacements.

Presently, models that can accurately predict performance parameters of small
displacement ICEs are immature. The complex nature of the processes involved in ICE
operation make creating an al-inclusive model to predict engine MEP and SFC quite
chalenging. Though modeling provides significant advantages to propulsion system
designers and devel opers, full scale engine testing remains the best approach for creating

engine performance maps.
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4. Fuels

Both Sl and CI engines require fuels to feed the combustion processes that
ultimately lead to the generation of useful work. Commonly S| engines use gasoline and
Cl engines use Diesel fuel. Kerosene fuel isthe main ingredient of jet fuels primarily
used in jet turbine engines that power many large aircraft. The fundamental
characteristics of these fuels, their origin and composition and their use in combustion

engines are presented here.

4.1. CrudeOil
Petroleum (or crude oil) is the general term for the naturally occurring hydro-carbon
mixtures found on earth [24]. The elemental composition of petroleum is mainly carbon,
hydrogen, nitrogen, oxygen and sulfur. The ranges of the proportions of the elements
comprising petroleum are summarized in Table 3.

Table 3: Elements in petroleum

Element % Mass Present
Carbon 83.0-87.0
Hydrogen 10.0-14.0
Nitrogen 0.1-2.0
Oxygen 0.05-1.58
Sulfur 0.05-6.0

Other elements and minerals present in crude oil are nickel, vanadium and iron. These
metals exist in very small quantities in petroleum, mostly measured in tens to hundreds of
parts per million. Though these metallic elements are only present in small
concentrations, they can have significant negative effects on refinery and distillation

operations and equipment.
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The exact composition of crude oils from different sources varies. The components
of aparticular crude oil mixture and its properties depend on many factors including
location, age and type of organic source material. Carbon and hydrogen are the bulk of
the material in crude oil. These two elements bond together and form molecules
commonly referred to as hydro-carbons. The basic formulafor a hydro-carbon follows

the form of Equation 16.

C.H, 16
Carbon number refers to the number of carbon atoms present in the hydro-carbon
molecule[25]. In Equation 16, the carbon number value is represented by x. The simple
formulain Equation 16 may dangerously mislead one to assume hydro-carbon structureis
simple, while usualy the contrary is more accurate. Hydro-carbons are structured in
various chains and rings of different ratios, design and chemical bonds.

There are thousands of different ways hydrogen atoms and carbon atoms can
combine to form hydro-carbons. When a hydro-carbon molecule has all carbon-carbon
single bondsit isreferred to as saturated because it contains the maximum possible
number of hydrogen atoms [26]. An unsaturated hydro-carbon has at |east one double or
triple carbon-carbon bond present. The single carbon-carbon bonds in saturated hydro-
carbons generally tend toward exhibiting molecular stability; whereas the double and
triple carbon-carbon bonds in unsaturated hydro-carbons tend to exhibit molecular
instability. Stability isimportant because the more molecularly stable the hydro-carbon,
the more difficult it usually isto refine. Another important characteristic of hydro-carbon
structure is whether carbon atoms form chain or ring-shaped molecules. Similar types of
hydro-carbons are grouped together in main categories. The similaritiesinclude
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hydrogen to carbon atomic ratio and bonding structure. The mgjor classes include
paraffins (alkanes), naphthenes (cyclanes) and aromatics. Olefins (alkenes) and
acetylenes (alkynes) are sometimes present in crude oil but are usually rare. In generad,
paraffins are saturated hydro-carbons with no ring structure (only having straight or
branched chains). Naphthene hydro-carbons are saturated as well but contain at least one
ring structure. Hydro-carbons classified as aromatics are unsaturated and contain ring
structures [24]. The classic example of an aromatic hydro-carbon is C¢Hg (Benzene).
Concerning a naming custom, saturated hydro-carbons (paraffins and naphthenes) have
names ending with ane while unsaturated hydro-carbons (aromatics and olefins) have
names ending with ene.

Crude oils are often qualitatively classified by the amount of paraffins, naphthenes
and aromaticsit contains. Thisled to a naming convention of describing a particular
crude oil as naphthenic or paraffinic crude oil [26]. The concentration of these different
groups of hydro-carbonsin a crude oil is central to how processing and refining is

conducted and dictates the amount and type of petroleum products that can be produced.

4.2. Petroleum Products as Fuelsfor Combustion
Through different processes (mainly distillation), petroleum feedstock is refined to
create awide range of useful products. Thermal separation physically divides crude oil
into different groups of hydro-carbons from which products including lubricants, waxes,
asphalt, solvents, and fuels are obtained. The separated groups of hydro-carbons are
called straight-run distillation fractions and are stratified based on boiling temperature
range. The group with the lowest boiling temperature range (-160°C to 0°C) contains

gases with carbon numbers of one through four. Vapor recovery units capture the gases
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which include CH,4 (methane), C;He (ethane), CsHg (propane) and C4H1o (n-butane). The
light straight run gasoline distillate has the next highest boiling temperature range (25°C
to 90°C) and contains hydro-carbons with five to six carbon atoms. Light straight run
gasoline can often be mixed directly into the final gasoline blend [26]. Heavy straight-
run naphthais next with a boiling range of 85°C to 190°C and having carbon numbers
between six and ten. The next distillate is kerosene with a boiling range of 160°C to
275°C and carbon number ranging from nine to fifteen. The remaining distillates include
light and heavy atmospheric gas oils (boiling range of 250°C to 340°C and 315°C to
410°C respectively). Light and heavy vacuum gas oils have the highest boiling point
range from 370°C to 575°C and high carbon numbers ranging from 22 to 45. The
remaining crude oil is called residuum and can’t be further distilled without causing
destruction of hydro-carbons because of extreme heating. Some of the residuum material
is used to form asphalt.

After distillation, further refining processes are used to extract more products from
petroleum and improve quality by removing impurities. Catalytic cracking is one such
process and is used to withdraw additional gasoline not originally present in crude oil.
The cracking process causes heavier fractions of petroleum to degrade into smaller
hydro-carbon molecules falling in the gasoline range. Also, the chemical products
derived from petroleum product intermediates (commonly called petrochemicals) are
extremely useful. Some examples of petrochemicals include adhesives, polymers, gels,
plastics and resins.

Of concern to this effort are the products derived from petroleum that are utilized as

fuel for combustion engines that power aircraft. Three major refinery products used as
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popular fuels are gasoline, diesel and kerosene. Gasoline is the dominate fuel usedin Sl
|CEs, while diesel fuel is predominately used in Cl ICEs. Keroseneisthe basisfor jet

fuels which are used in gas-turbine engines.

4.3. Gasoline
Gasoline is amixture of hundreds of different hydro-carbon molecules. The

composition of gasoline varies depending on the crude oil source and refining process.
Gasoline is composed of hydro-carbons having carbon numbers between four and
fourteen. The average properties of gasoline are most similar to that of CgHig (iso-
octane). Hydro-carbons with carbon numbers of three or lower (CH4, methane; CsHs,
propane; etc.) are too volatile to be blended in as component of gasoline. Conversely,
hydro-carbons with carbon numbers of fifteen and higher are too heavy and non-volatile
to be used in gasoline mixtures. Gasoline isthe fuel of choice for passenger automobiles
using Sl ICEs. Itshigh volatility allows for easy carburetion and good ignition properties
in varying environmental conditions. Gasoline dominates the refining of crude oil. If
| CE cylinder compression ratios are too high the problem of engine knock can be

experienced which is described later.

44. Diesd
Diesdl fuel isablend of light to middle distillate fuels. A typical diesel fuel mixture
has the average hydro-carbon structure of CypgH1s7. The fraction of petroleum
distillation between gasoline and kerosene is the primary component of diesel fuel andis
sometimes called gas oil. Diesel fuel exhibits less volatility than gasoline, but more
volatility than kerosene. Originally, diesel fuel found most use in the large, slow and

heavy ClI engines used in railroad, marine, industrial and heavy-construction equipment
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applications. The largest barrier to diesel fuel usein smaller Cl engines with greater
engine rotational speeds was how to effectively deliver acombustion ready fuel chargeto
the engine cylinder. Carburetors were insufficient because of the low volatility of diesel

fuel. The solution came in the form of fuel injection.

45. Kerosene
Keroseneis afuel made up from crude oil fractions that exhibit boiling between
temperatures of 150°C to 300°C. Properties of kerosene on average closely relate to that
of CisHxs5. Kerosene fuel islargely consumed by gas-turbine engines used in large
aircraft. Kerosene haslow volatility which aidsin fuel storage safety but can impede
engine startup and low temperature engine operation. The wide range of operating
conditions for large aircraft challenge the ability of kerosene based jet fuels to achieve

proper combustion.

4.6. Octane Rating

A major property of fuels for use in combustion engines is octane number (ON).
The ON of afuel for the layman has come to be ageneral indicator of fuel quality but it is
really a parameter used to evaluate the fuel’ s performance in two specific tests. Auto-
ignition or knock in Sl ICEs s an undesirable and abnormal combustion event that occurs
within the cylinder. Engine knock happens when the fuel-air mixture detonates instead of
achieving uniform combustion (deflagration) initiated by a spark. Detonation involves
supersonic combustion and is characterized by a shock wave that propagates through the
cylinder and causes a distinctive knocking sound. Detonation usually resultsin cylinder
pressures higher than the engine was designed to withstand which is why knocking is

often damaging to engine components. Engine knocking is also associated with lossesin
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efficiency. Cl ICEs are designed to purposely operate with detonation in the cylinder and
have cylinders devised to handle the resulting higher pressures. The causes of engine
knock are related to engine design, environment and fuel characteristic. To relate the
occurrence of knock to actual fuel typesthe ON was created. Octane number
characterizes various fuels' resistance to exhibit engine knock in ICEs. The higher the
ON, thelesslikely the fuel isto experience engine knock [27]. A fuel must be tested to
establish its octane rating.

Two testing methods were devel oped to determine the ON of afuel. Thetwo
methods of testing are the Research Octane Number (RON) and the Motor Octane
Number (MON). Both methods test afuel at specific operating conditions, with MON
testing conditions being more severe. RON testing uses an inlet mixture temperature of
52°C and engine speed of 600 RPM. MON testing uses an inlet mixture temperature of
149°C and engine speed of 900 RPM [27].

A single cylinder Sl engine designed by the Cooperative Fuel Research Committee
(now Coordinating Research Council, Inc.) is used for testing. The engine has the ability
to vary compression ratio from three to 30. The octane rating scale uses C;Hig (n-
heptane) and CgH1g (iso-octane) asits two reference fuels. The two fuels have volatility
properties that are reasonably similar, as show in Table 4.

Table 4: Reference fuels for octane rating

Fuel Formula Melting Boiling Point | Density | Heat of Vaporization

Name Point (°C) (°C) (g/mL) (MJkg)
n-heptane | CrHie -90.70 98.4 0.6840 0.365 at 25°C
iso-octane| CgHss -107.45 99.3 0.6919 0.308 at 25°C




The lower end of the scale is defined as the knocking characteristic exhibited by testing
n-heptane and the ON is |abeled zero. The upper end of the scale uses iso-octane and its
ON isdefined as 100. An electronic knock meter placed in the cylinder head is used to
guantitatively measure knock. To determine ON the fuel of interest istested using either
the RON or MON methods or both. A mixture of specific amounts of the reference fuels
n-heptane and iso-octane is formed and tested to attempt to match the knocking data
recorded initially for the fuel of interest. Once the knocking datais closely matched, the
amount (percentage by volume) of iso-octane in the blend is the ON assigned to the fuel
of interest. Thus, if the matching blend is 90% iso-octane by volume, the octane number
iS90. In the United States of America, the mean of the RON and MON valuesis used to
describe fuel resistance to engine knock and is called the antiknock index. The

relationship is shown in Equation 17.

RON + MON
antiknock index = — 17

Octane number is not primarily related to the energy content of afuel [26].
Correlations attempting to relate ON to energy content are often confusing and
misleading, especially when considering both the energy density and the specific energy
of fuels. Ultimately, energy content is only afunction of the molecules present in the fuel
mixture. However, in engines, transferring chemical energy (in chemical bonds) to heat

energy and finally to mechanical energy is a matter of combustion.

4.7. Combustion and Volatility
Combustion is the rapid oxidation of achemical resulting in the release of heat or

light or both [21]. The basic reactants in combustion are afuel and an oxidizer. A
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stoichiometric combustion process involves the precisely necessary amount of oxidizer
reacting with fuel resulting in complete combustion of the reactants. Complete hydro-
carbon combustion has all the reactant carbon and reactant hydrogen formed into CO,
and H,0 as products. If the amount of oxidizer present in the reaction is less than
stoichiometric, the result isincomplete combustion with un-reacting excess fuel
essentially becoming aproduct. This scenarioissaid to be fuel rich. In the opposite
scenario, where more than the stoichiometric amount of oxidizer is present, the reaction
issaid to be fuel lean. The true combustion reaction of hydro-carbons with air asthe
oxidizer involves hundreds of intermediate reactions and many different products.
Evaluating these reactions is most accurately done using a computer program to calculate
chemical equilibrium reactions and analyze chemical kinetics, like the National
Aeronautics and Space Administration’s Chemica Equilibrium with Applications (CEA)
program, CHEMKIN and Cantera. The simplified general reaction (global reaction) isa
helpful illustration of the net effects of combustion. Hydro-carbon combustion with
atmospheric air and only carbon dioxide, water and nitrogen as products follows the
formulain Equation 18.

C,H, + a(0, + 3.76N,) - xCO, + (y/2)H,0 + 3.76aN,  [21] (2.30) 18

where
a=x+(y/4) [21] (2.31) 19

Air isacomposition of oxygen, nitrogen, argon, water vapor and carbon dioxide and
other elements and molecules. Since oxygen and nitrogen are the dominant components
of air, the composition of air is assumed to be solely oxygen and nitrogen in

concentrations of 21% and 79% by volume. This equatesto 3.76 moles of N, for every 1

36



mole of Oz inair. Actual combustion isincomplete and products such as CO, NO, NO,
and soot are also formed. For iso-octane, the balanced stoichiometric global reaction is

shown by Equation 20.

CgHyg + 12.5(0, + 3.76N,) — 8CO, + 9H,0 + 12.5(3.76N,) 20

The heat energy content released by the reaction is called the enthal py of reaction (AHg)
or enthalpy of combustion. This change in specific enthalpy (Ahg) is measured in
kJkgre and isfound by subtracting the specific enthalpy of the reactants from that of the
products and is summarized in Equation 21. The molecular weight of fuel is denoted by

MW;.

AHg
MW,

= Ahgp = —Ah, = hprod — Nreqct 21

The heat of combustion (Ah,) is equivaent to the enthalpy of combustion in magnitude
but oppositein sign. Heat of combustion values were determined using the CEA
program for CgH1g (iso-octane) and Jet-A (civil equivalent of JP-8) kerosene based jet
fuel. The results of these calculations are shown in Table 5. Complete calculation data
can be found in Appendix A.

Table 5: Combustion equilibrium reaction calculations

Heat of Lower Specific Heat of | Specific Heat of
Fuel Name Formation Heating Combustion, Combustion,
(kJkmol) | Value (kJkg) (KIKQmix) (kJ/kagr)
Jet-A (Ci2H23) -303,403 44,316 -119.79 -35,271
iso-octane (CgHig) | -259,160 44,791 -144.71 -41,151
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Diesel fuel combustion cal culations were not conducted because the fuel was unavailable
in the CEA database of reactants. The calculation shows that for complete combustion
iso-octane releases more heat per mass than Jet-A (kerosene). Fuels are not ideally
combusted however. For this effort, the combustion of fuelsin ICEsis of interest.
Combustion in SI ICEs requires fuel be vaporized (or at least atomized) to achieve proper
combustion. Volatility represents afuel’ s vaporization properties.

Fuel volatility is described by afuel’ s boiling temperature range and vapor pressure
properties. Vapor pressure is the measure of the amount of pressure afuel exertsat a
certain temperature. Flash point temperature is a measure aso used to examine fuel
volatility. It defines the minimum temperature where a fuel-air mixture becomes
flammable. Flammability limits are measured as the flash point on the low end (not
enough fuel vapor for ignition) and afuel rich flammability limit on the high end (not
enough air or oxidizer for ignition). In ICEshigh volatility isfavored in fuels because it
allowsfor easier ignition and shorter more stable flame propagation. Contrarily, higher
volatility makes fuel handling more difficult. More care must be taken in properly
venting fuel tanks to prevent dangerous rises in tank pressure. In general, afuel’sboiling
point represents the point at which its vapor pressure achieves atmospheric pressure.

This permits boiling or the vaporization of the fuel. Asrelative density increasesin fuels,
boiling point temperature increases; thus, as fuelsincrease in density they usually have
lower volatility. Heavy fuelslike diesel and kerosene are less volatile than gasoline.
Kerosene, diesel and gasoline fuels have different knock, volatility and combustion
properties. They are each well suited for primary use in their specific engine and

combustion type. It is predicted using kerosene and diesel fuel in a Sl ICE designed for
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gasoline fuel will result in reduced engine performance in terms of fuel consumption,

efficiency and power.

4.8. Heavy Fuels Effect on | CE Performance

Performance of an SI ICE using different fuels was examined by research done by
M.S. Shehata [28]. The fuelstested were gasoline (Cs 2sH15.5), kerosene (CioH26) and
Liquefied Petroleum Gas (LPG). LPG was 93% propane (C3Hsg) by mass and the
remaining mixture was made up of ethane (C;Hs), propene or propylene (CsHg) and
butane (C4H10). Actual cylinder pressure was measured and compared to reconstructed
cylinder pressure values using Fast Fourier Transforms. Engine performance parameters
of MEP and SFC were calculated using equations from Heywood [27] and measured
values of cylinder pressure. These parameters were plotted versus crank angle.
Rotational engine speeds where data between the fuels was compared were 1588 RPM
for gasoline, 1549 RPM for kerosene and 1535 RPM for LPG.

It was found that the net heat release of gasoline was higher than that of kerosene
(which agrees with the rough CEA calculations done earlier). The peak net heat release
of LPG was higher than kerosene but less than gasoline. Peak cylinder pressure was
highest in kerosene, then gasoline and then LPG. Peak cylinder pressure location didn’t
correspond to the location of peak net heat release. Exhaust gas temperature was plotted
versus crank angle and showed gasoline to have the higher values over LPG over the
entire range of crank angle. Torque and exhaust gas temperature data was taken for the
different fuels and wide open throttle. The highest peak torque was achieved by LPG,
followed by gasoline and then kerosene. Exhaust gas temperature of kerosene was higher

than gasoline and L PG at crank locations corresponding to the time before the beginning
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of combustion. Table 6 summarizes how the parameters measured compare amongst the
different fuels.

Table 6: Measured performance parameters of different fuels

Ful Peak Cylinder Peak Net Heat | Peak Exhaust Gas Torque
Pressure (kPa) | Release (Jdeg) | Temperature (K) (N-m)
Gasoline 4200 53 1880 800
Kerosene 4500 37 1600 560
LPG 3200 47 1820 1040

How the different parameters relate to each other is difficult to ascertain becauseit is
not intuitive. 1t was believed parameters would trend in alike manner or be inversely
proportional. Properties of duration of combustion and specific hest ratio variance was
investigated by the researcher as well, but was not seen as applicable to the focus of this
effort. Unfortunately SFC, MEP and efficiency parameters were only presented for
gasoline so no comparison is drawn between the fuels concerning performance in these
areas. Comparisons of these parameters may clear up the trends amongst the
interrelations.

Based on the research, developing a model to accurately predict small ICE
performance was seen as out of reach, especially in the available time for this effort. The
research also showed that running Sl ICEs on Diesel and JP-8 fuel would be difficult and
create anumber of hurdles. Testing the ICEs on heavy-fuels remained a secondary
objective of this effort. The research gained from literature reinforced the necessity of
engine testing to produce engine performance maps. Next, the main objectives of this

effort were attacked by establishing a methodol ogy.
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[11.  Methodology

1. Chapter Overview

This chapter discusses the design and devel opment of the various components of the
dynamometer test stand utilized to test the engines for this effort. The dynamometer test
stand parts include the test stand, mounting hardware, dynamometer, data acquisition
computer, data harness, instruments and sensors, fuel delivery hardware, ventilation
system, safety shield, throttle control and engine starting equipment. Also, this chapter

details the experimental methods used for the engine testing conducted.

2. Dynamometer Test Stand

For this effort and future small engine testing a commercia off-the-shelf (COTYS)
dynamometer was purchased. The dynamometer purchased was a DY NOmite™
dynamometer system from Land and Sea, Inc. who manufacture customized engine or
chassis dynamometer systems for car, truck, motorcycle, snowmobile and watercraft
dynamometer testing. The dynamometer purchased (Figure 9) was a DY NOmite™ Mini
Eddy Dyno 96v. This dynamometer was capable of testing small ICEs and EMs that
produce up to three horsepower. A 96 V direct current eddy-current absorber was used
by the dynamometer as a brake to |load the engine. A reaction cradle was incorporated
into the dynamometer and a linkage attached the cradle to a 25 pound load cell. Engines
were mounted to the cradle and their engine shafts coupled to the absorber via a belt

pulley and gears for testing purposesin this effort.
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L

Figure 9: DY NOmite™ Mini Eddy Dyno 96 V dynamometer

Data were transmitted from the dynamometer to the DY NOmite™-Pro Data
Computer and Controller (Figure 10) viaa 28 channel harness. The harness was capable
of passing engine RPM, absorber RPM, torque, exhaust gas temperature, fuel flow, air
flow and other data from the dynamometer system. Also, DYNO-MAX 2010 Pro
Software (Version 10.10) was supplied with the dynamometer for data recording and
analysis of data fed from the data computer and controller viaa universal serial bus cable.
The software was installed on a desktop persona computer (PC) running the Microsoft
Windows XP® operating system. Software features are discussed in a subsequent

section.
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Figure 10: DY NOmite™ data computer and controller

With the dynamometer procured, a testing stand was required to house the
dynamometer system. No suitable test stand was available so atest stand was designed
and built. The basic design called for atable like structure with an open frame for
mounting the dynamometer as well as a solid table surface for mounting sensors and
control equipment. The test stand was assembled from T-glotted aluminum framing from
80/20 Inc. Polycarbonate panels were used to form an enclosure surrounding the
dynamometer on four sides for safety during operation as well as help contain exhaust.
Engine exhaust was directed outside the laboratory via afan and ducting implanted
through the polycarbonate rear panel. No panel was placed beneath the dynamometer.
One side was | eft open to give control and fuel lines access to the dynamometer. The

dynamometer test stand is shown in Figure 11.
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Figure 11: HE-RPA dynamometer test stand

The dynamometer itself was bolt mounted to four air filled shock-absorber (Figure 12).
The shock-absorbers alowed for leveling the dynamometer and more importantly, hel ped

limit the transfer of vibration to the rest of the test stand.
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Figure 12: Dynamometer mounted to the test stand



3. Engines

The work of Hiserote [10] showed that for the HE-RPA design it was best to size the
| CE for the cruise segment of a nominal ISR mission and the EM for the endurance
segment of the same mission. The cruise segment required that the | CE generate roughly
265.7 W (0.356 hp) of power [10]. With thisinformation, two COTS engines providing
power in the required range were selected for testing. The engines were the Honda GX35
(Honda) four-stroke spark ignition (Sl) engine [29] with a displacement of 35.8 cm® and
the Fuji-IMVAC BF-25EI (Fuji) four-stroke Sl engine [30] [31] with a displacement of
24.5 cm®. Peak power of the Honda engine was manufacturer rated for 1.3 hp @ 7000
RPM and peak power of the Fuji was manufacturer rated for 1.6 hp @ 7500 RPM. Both
engines are small single cylinder designs using a carburetor to meter fuel and are
intended for use with gasoline only. Also, more manufacturer engine specifications are
listed in Table 7 for easy comparison.

Table 7: ICE manufacturer’ s specifications

Honda GX 35 Fuji-IMVAC BF-25El
Displacement (cm®) 35.8 245
Mass* (kg) 2.700 1.770
Height x Width (mm) 230 x 204 190.5 x 165
Bore x Stroke (mm) 39x 30 24 x 24
Peak Power (kW) 0.97 @ 7000 RPM 1.19 @ 7500 RPM
Peak Power (hp) 1.3 @ 7000 RPM 1.6 @ 7500 RPM
Peak Torque (N-m) 1.6 @ 5500 RPM 1.37 @ 5000 RPM
Peak Torque (Ibf ft) 1.18 @ 5500 RPM 1.01 @ 5000 RPM

* measured dry mass (i.e. no oil in engine)

Images of both engines are shown in Figure 13 and Figure 14.
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Figure 13: Honda GX35 (a.) front view (b.) rear view

Figure 14: Fuji-IMVAC BF-25El

One of the motivations for this research was that, currently, many of the

manufacturers of small ICEsin use in hobbyist R/C controlled model aircraft have
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inaccurate and at times, inflated figures for claimed power and torque. Also, the author
was unable to find any manufacturer supplied data concerning SFC. This was not found
to be unusual, since SFC is not usually important to hobbyists or users of lawn mowers,
weed-whackers and other small gas powered machinery in which these engines are
predominately used. The author expected the power and torque claims for the Honda to
correspond well with the power and torque results from dynamometer testing. This
expectation was founded, for the Honda, by the statement that the manufacturer tested the
model in accordance with the Society of Automotive Engineers (SAE) J1349 Standard.
This standard titled Engine Power Test Code - Spark Ignition and Compression Ignition —
Net Power Rating establishes a method for dynamometer testing to resolve loaded engine
power [32]. Engine manufacturers use this standard so that level comparisons of engine
power rating can be made across different engine designs, sizes, models and
manufacturers. The net torque and net power versus engine speed plots shown in Figure
15 were supplied by Honda and were presumably from engine testing following the SAE

J1349 Standard.
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Figure 15: Honda GX 35 manufacturer’s supplied torque and power chart [29]

Fuji-IMVAC made no mention of the testing method conducted to produce net power
output numbers. For this reason and the test results of Wilson’s work testing the larger
Fuji-IMVAC BF-34EI [20], it was suspected that the smaller Fuji (tested in this effort)
would have tested power output figures less than the manufacturer’s claims. As can be
seen in Table 7, Fuji-IMVAC claims a higher power output for its 25 cm®engine over the
larger Honda 35 cm® engine.

For incorporation into the small RPA, acritical parameter of engine performance is
the engine specific power which is more commonly called power to weight ratio. The
formulafor specific power was shown earlier in Chapter 11.3.4 and the inverserelation is

shown here as Equation 22.

rated power
22

ower to weight ratio = - .
P & engine weight/mass
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A comparison of the power-to-weight ratios of the two engines using their claimed peak
power ratings was done. The results are shown in Table 8.

Table 8: Claimed | CE specific power

Honda GX 35 Fuji-IMVAC BF-25El
Peak Power (kW) 0.97 @ 7000 RPM 1.19 @ 7500 RPM
Mass (kg) 2.700 1.965*
Specific Power (KW/kQ) 0.36 0.61

*This mass of the Fuji engine includes the el ectronic ignition module mass

A power to weight ratio of 1.23 kW/kg (0.75 hp/lbm) was used by Hiserote for sizing of
the I CE during the conceptual design of asmall RPA withaHEPS[10]. This power to
weight ratio more closely mimics the average value a 2-stroke engine would exhibit. The
claimed specific power of both these 4-stroke enginesis less than half of the proposed
design power-to-weight ratio. Also, the Fuji has a claimed specific power rating nearly
double that of the Hondaengine. If the specific power measurements were validated
through testing and thereby remained consistent with manufacturer’ s claims, the Fuji
would clearly have a weight benefit over the Hondafor use in the HEPS of the small

RPA prototype.

4. Fuel Delivery System, Hardware and Sensors

A 1480 cm® gasoline fuel tank was mounted to a platform above the dynamometer
test stand. Two brass tubes were mounted through a stop in the fuel tank. One tube was
used as avent, while the other fed fuel to the engine. Fuel was first drawn through afuel
filter pick-up placed in the fuel tank and then a second hobbyist in-line fuel filter. Fuel

passed through afuel flow sensor next that measured fuel flow. The fuel flow sensor was
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provided by Land and Sea, Inc., and it accompanied the dynamometer package. The fuel
flow sensor was an Omniflo® Turbine Flow-meter made by Flow Technology™. The
flow-meter was a tangential flow transducer capable of accurately measuring low fluid
flows by using atangential rotor design coupled with a precision pivot sapphire bearing.

The flow-meter is shown in Figure 16.

Figure 16: Flow Technology™ fuel flow-meter

The turbine’ s rotor rotation (caused by passage of a flow) was sensed by a modulated
carrier pickoff that then relayed a proportional electrical frequency output to the
dynamometer. The unit used in this research was factory calibrated to measure flowsin a
range of 0.18 gal/hr to12 gal/hr. This range approximately corresponded to a capability
of measuring gasoline fuel mass flow in the range of 1.09 Ibm/hr to 57.6 Ibm/hr. Lastly
the fuel exited the fuel flow-meter and went through a final hobbyist fuel filter before
entering the engine carburetor.

Designs for various flanges and engine mounts were drawn and then submitted to the
Air Force Ingtitute of Technology’s (AFIT) Fabrication and Model Shop where they were

fashioned. These parts were used to mount sprockets to the engine shaft as well as mount
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the engine to the reaction cradle. Drawings of the various plates and mounts are included
in Appendix B.

All ICEs were tested using factory spark timing. Sparking was initiated by a
magneto on the Honda engine and by a battery powered electronic spark ignition module
on the Fuji. Precise and remote throttle operation was desirable for increased flexibility
concerning engine testing. To operate the throttle and choke valves of the engines,
el ectronic servomechanisms (servos) were used. These servos used had components that
included a body and arotating wheel. One end of a cable or threaded metal shaft was
physically attached to a specific location on the servo wheel and the other end attached to
the throttle or choke lever on the engine. A battery-powered controller was used to
dictate the servo’s motion. The unit used for control wasaMT-1 R/C Multiple Tester

made by Grand Wing System U.S.A. Inc [33]. The controller is shown in Figure 17.

"

[ = MT-1—
RC MULTIPLE TESTER

Figure 17: Servomechanism controller

The servo wheel rotated a particular amount depending on the pulse sent from the tester.
This servo rotation was used to actuate the throttle or choke causing it to open or close.
The tester allowed specific pulse-width-modulation to be established. The minimum
pulse-width step possible to be sent to the servo from the tester was 1us. Manipulating

the pulse-width step allowed for dividing the range of throttle from idle to wide open into
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definite segments. The established segments are explored later. Though the servo was
actuated using a defined pulse-width this did not correspond to an exactly precise throttle
position because of hysteresis. A throttle position sensor (TPS) was procured but was
unable to be incorporated into this research effort. With a TPS, the actual throttle
position would be known and when used in concert with the servo (in a closed or open
loop) would direct the servo to actuate to open or close the throttle to any position.
Starting the engines was achieved using a high torque EM used to start enginesin
R/C aircraft viatheir propellers. The engines tested in this effort had a through engine
shaft design resulting in a protruding threaded bolt on the backside of the engines.
Propeller nuts were attached to the threaded bolts, and the cup attachment on the high
torque EM fit over and tightly gripped the cone of the prop nut. The engines were started

by this method using the starter EM and 12 V battery shown in Figure 18.

HANGAR 9

12V TAh SEALED BATTERY

Figure 18: Prop starter EM and battery

5. Data Acquisition Software
The supplied DYNO-MAX software was used to operate the dynamometer, record

data and do some data analysis. A screen shot of the main data acquisition console of the
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DYNO-MAX softwareis shown in Figure 19. The software allowed for adjusting
console setup to meet specific testing needs. Gauges and ranges had the ability to be
altered and moved to customize the console setup. The information received by the
software program from the data computer and controller was limited to absorber RPM,
measured torque, engine temperature and fuel flow. Hundreds of built in formulas were
available from the software to calculate other parameters including engine power, BSFC,
and BMEP. These formulas also used information about the engine’ s specifications that
was input into the Active Run Information window [34]. The information included local
weather data (ambient temperature, relative humidity, altitude and relative pressure),
engine dimensions (bore, stroke, and displacement) and fuel density. The active run

information was also used to correct datato SAE standards and standard-day conditions.
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Figure 19: DYNO-MAX data acquisition software screenshot

6. Testing Procedure

The essentia data sought by this investigation was torque, engine speed and fuel
flow. First, adynamometer torque measurement calibration was conducted. Next, initial
engine testing was done to check the operation of all mechanical and electrical parts.
Also, the engines were broken in through initial testing. Thisinitial testing also provided
an opportunity to familiarize with the dynamometer setup and data acquisition software.
The familiarization with the dynamometer (as well as the need to meet safety

requirements) led to the establishment of standard operating procedures (SOPs) for



engine and EM testing using the dynamometer. A checklist document (included in
Appendix C) was created that included step by step instructions such as:

- Ensure sprocket-engine flange is securely fastened to engine shaft

- Examine oil pan dip stick to ensure sufficient oil is present in crankcase

After initial testing and finalization of SOPs, baseline tests were done to establish
how varying the throttle position (dictated by the servo) corresponded to engine RPM,
torque, power and fuel flow measurements with no additional loading provided by the
dynamometer absorber. Lastly, engine testing was done to establish a matrix of data
points to generate engine performance maps. Engine throttle was adjusted and RPM,
torque and fuel flow measurements were taken at a series of varying engine loads. Each
test was run for two minutes and the data points were the mean values of the
measurements. The process was repeated and at all possible throttle positions. After data

collection, the data was analyzed and the results were presented.
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V. Analysisand Results
This chapter details the outcomes of the testing done in this effort. The data
collected during testing is also examined to draw conclusions and verify or disprove

hypotheses made.

1. Dynamometer Calibration

Before testing was conducted and measurements taken, the dynamometer was
calibrated. Initial torque-arm calibration was done by the factory, so are-calibration test
was done to ensure initial calibration accuracy. A dead-weight style test was used for the
torque-arm calibration. A calibration bar with bolts that mount directly to the
dynamometer’ s reaction cradle was supplied with the dynamometer. With the
dynamometer system turned on, the calibration bar was affixed to the reaction cradle.
The calibration bar had screw eye hooks at both its ends. The distance from the eye hook
to the center of the reaction cradle was designed and measured to be 1.0 ft. With no mass
attached to the calibration bar, the dynamometer was zeroed using the DY NO-MAX
software. A known torque was generated by hanging aweight of known mass from the

eye hook and was calculated using Equation 23.

T=F-d 23

The calibration setup isillustrated in Figure 20.
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Figure 20: Torque arm calibration setup illustration

Two separate masses were used utilizing laboratory hardware items. One masswas a
sprocket with amass of 0.1644952 kg. The other mass was a C-clamp with a mass of
0.1641053 kg. The calibration bar is shown alone in Figure 21 and attached to the

dynamometer in Figure 22.

Figure 21: Calibration bar alone

'. ’/ 3

Figure 22: Calibration bar attached to dynamometer
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The moment arm length (center of the calibration bar to the screw eye hook) was

measured to be 1 ft or 0.3048 m. The results of the calibration are shown in Table 9.

Table 9: Torgue arm calibration results

Calculated Torque

Dead- Mass (kg) Arm Length Torque Measured Differential
weight (m) (N-m) Torgue (N-m) (N-m)
Sprocket | 0.1644952 0.3048 0.4919 0.501 0.0091
C-clamp | 0.1641053 0.3048 0.4907 0.503 0.0123

The results showed that the initial calibration would provide sufficient accuracy. The

measured and calculated torques differed by less than + 0.02 N-m. For thisresearch

effort, torque measurements within £ 0.05 N-m was seen as adequate for developing

engine performance maps. Significant torque ripples and spikes due to the single

cylinder piston engines being tested were expected. It was believed the torque spikes

would lead to fluctuating torque measurements impairing the ability to attain torque

measurements with higher accuracy than + 0.02 N-m.

Another calibration was done in regard to dynamometer operation. Greiser [11] and

Harmon [9] calculated the gear-ratio between the dynamometer sprocket and the sprocket

mounted to the engine shafts. A magnetic pick-up mounted to the dynamometer was

used to measure absorber RPM. The pickup face was the absorber sprocket shown in

Figure 23 . Thiscalibration would ensure the proper engine RPM was calculated by the

DYNO-MAX software based on measured absorber RPM. The number of grooves or

gear teeth were counted on the sprockets and compared. The gear-ratio was calculated to

be 2 to 1 and this data was entered into the software. Greiser also compared the RPM

measurement via the optical RPM sensors used by his C-based controller and LabView
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GUI for data collection. Using an EM operating at very low RPM, the number of pulses
(generated by the optical sensor) was recorded for aminute. The rotations of the
dynamometer absorber sprocket were physically counted by eyesight and compared to
that of the optical sensor measurements and the magnetic pick-up inherent in the
dynamometer system. The rotations were found to be effectively equivalent across all
three measuring techniques and the calculated 2 to 1 gear-ratio was determined to be

valid.

(@) (b))

Figure 23: Sprockets used in testing (a.) absorber sprocket (b.) engine shaft sprocket

2. Fuel Flow-meter Calibration

A series of simple calibration tests were performed to ensure the factory calibrated
fuel flow-meter was accurately and precisely measuring fuel flow. The calibration was
performed using the Honda GX35 engine. The engine was run at a series of specific
throttle settings and operated for a specific period of time. Using a scale, the mass of the

fuel tank was measured at 30 sintervals. The fuel mass measurements over time were
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plotted and fitted with an ordinary least squaresline. Thetime rate of change was
equivalent to the fuel mass flow rate during the test. This method of fuel mass flow rate
measurement was used by Menon in similar research focused on small I CE testing [35].

The calibration test setup is shown in Figure 24.

Figure 24: Fuel mass flow rate calibration test setup

Table 10: Fuel tank mass measurements (1% series of tests)

Time Fuel Tank Mass (g) Fuel Tank Mass (g) Fuel Tank Mass (g)
(9 7100 RPM Average 8300 RPM Average 8900 RPM Average
0.0 ~ 528 ~
0.5 592 525 565
1.0 591 522 561
1.5 589 519 558
2.0 587 517 554
25 585 514 551
3.0 583 511 548
35 581 508 544
4.0 579 506 541
45 577 503 ~
5.0 575 500 ~
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The Honda was run unloaded (not mechanically connected to dynamometer load) at three
throttle settings corresponding to average engine speeds of 7000 RPM, 8300 RPM and
8900 RPM respectively. Theresults of thetests fuel tank mass measurements using the

scale are summarized in Table 10 and plotted in Figure 25.

600 I I
|y = -3.8909x + 594.6
580
560 —
© |y = -6.8095x + 564.67
s 540 @ Fuel Tank Mass (g)
~ 7000 RPM Average
C
@
= —‘ =-5.5273x + 527.73 I—
No) 520 Y B Fuel Tank Mass (g)
I 8300 RPM Average
500
A Fuel Tank Mass (g)
8900 RPM Average
480
0.0 10 2.0 3.0 4.0 5.0
Time (min)

Figure 25: Fuel tank mass measurements over time using scale (1% series of tests)

Table 11: Comparison of mean fuel mass flow rates (1% series of tests)

Ave. Engine Ave. Fuel Mass Flow | Ave. Fuel Mass Flow
Speed Rate (g/min) from | Rate (g/min) from
Scale Flow-meter
7000 3.891 11.711
8300 5.527 31.125
8900 6.810 44.423
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The comparison of the mass flow rates calculated from fuel tank mass measurements
with those calculated from flow-meter data and DY NO-MAX software is shown in Table
11. The calibration test showed that the fuel mass flow rate measurements from the flow-
meter and scale measurements differed by greater than afactor of three. Thisvery large
discrepancy between the valuesfirst led the author to search for something amiss with
parameters in the data acquisition software.

The flow-meter used in the dynamometer test stand cal culated volumetric flow rate
and then the DY NO-MAX software converted this datato a fuel mass flow rate using
user input information about the fuel’ s relative density and local weather data. The
DYNO-MAX data acquisition console (Figure 19) is programmed to show and record
measured and calculated dynamometer data. Calculated dynamometer data was found by
use of default formulas stored in the DY NO-MAX software. The formula used for fuel
mass flow rate calculation was examined to ensure correctness. The formula displayed in

the Formula List window of DYNO-MAX is shown in Figure 26.

Farmula file; C:%Program Files\DYMNO-MAsAConfigurationsD efault, for
Expart... | Heplace...l Pt | [ Favortes Only W Sort Alphabetically Help | Ok I

Bl YA uel Flow - & (Fueld] a| Cancel I

o " |nfo; Demo-tode Flag = 1.000 { ~ General

b e _Dema FuekFlow Channel Rl b e

I s [ Fuel Flow - & =]
P Infa: Specific Grawity }* — Farmula Description
LB elge | Board #1°2 Fuel Flow channel data ;l
TE DAQID #1: Fuel Flow * alane -]
i if DAL D #1: DN Omite EEPROM >=9.000 {

oA 0345 = Address: I'IE!D

; _n. '? | .[f:."l'xl':!_'l_[i#'l: SEECIIfI?EraVIty Ehpre W

Figure 26: DYNO-MAX software formulalist for fuel mass flow rate calculation

The formulain mathematical form is shown in Equation 24.

62



V - 8.345(Ibm/gal) - fuel relative density = m 24

where 8.345 |Ibm/gal is the density of water at 4°C, and V is volumetric flow rate
The formula was evaluated for known volumetric and mass fuel rates and was determined
to be correct so the author moved on to examining the fuel flow channel settings.
The factory set calibration values were checked for accuracy by comparing values
present in the Calibrate DYNOmite™ Channels window (Figure 27) to the values listed

in the DYNOmite™ manual [34] and software Help index.

Calibrate D¥NOmite Channels ' 2=l

Filename: C:hProgram Filesh Dy HO-Max\Configuration® Dy MO mite-Fro board 1D 1.dag

Board Mumber: | 1 - l

EGT#2 | EGT#3 | EGT #4 | EngineTemp | &itTemp. | Humidiy | EGT #5 | EGT #5 | EGT #7
EGT #8 I Ratary Temp I Ratary Torque I Fnock Senzor I Accelerameter
Farel K.nob 2 I Harnesz Knob % | Servo Feedback & I Supply Walkz I Air Flaww

Engine BPR-8, I .-‘-‘-.I::su:url:uerFlF'M-EI Torque  Fusl Flow | Load EEIII AFR I Barnmeterl F'ressurel EGT #1 I

Final Heading:lﬂ II'I'IUITIiFI LI Percent of Full Scale:! oo oz
Pre-Edit Table Heem:lir'@ultI Fraw Digital "v"alue:iﬂ
Freguency 3: iFueI Flo |FI|::I;~.I - Liguid j
Fuel Law-Flaw [G azaling] j Edit Trigger Yaltage... I

Fecalibrate uzing Flow Factor = | |1 1.82436

Offzet: ID— 0
Gain: |018742 Display readings below: Il:l as IEI Edit Table [none] ... |I
To Power: |0.91 EI Display readings above: |1 &z |100000
bultiply By {0.007 1]
Murnber of Bits: |16 0 -» B5535

<< Simple | | Ok I Cancel | Sppiy Help

Figure 27: DYNO-MAX software fuel flow calibration window
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The gain, power and multiplier values did not correspond. Immediately, it was found that
the fuel flow channel was initialized with settings for a Sandard Flow Transducer and
not the Low Flow Transducer used in this dynamometer setup. The channel gain, power,
multiplier and flow factor values were changed by selecting Fuel Low-Flow (Gasoline)
from the drop down menu highlighted by the red box in Figure 27. Following these
changes, a second series of calibration tests were conducted to determine if flow-meter
measurements were improved.

Table 12: Fuel tank mass measurements (2™ series of tests)

Test1 Test 2
Time
(min) Fuel Tank Mass (g) Fuel Tank Mass (Q)
8000 RPM Average 8000 RPM Average
0.5 740 600
10 738 598
15 735 ~
2.0 732 ~
2.5 730 501
3.0 727 588
35 725 585
4.0 723 582
45 720 580
5.0 717 577
55 715 ~
6.0 712 ~
6.5 709 ~
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Figure 28: Fuel tank mass measurements over time using scale (2™ series of tests)

Table 13: Comparison of mean fuel mass flow rates (2™ series of tests)

Ave. Engine Ave. Fuel Mass Flow|Ave. Fuel Mass Flow
Test s|oeeé|J Rate (g/min) from | Rate (g/min) from
Scale Flow-meter
1 8000 5.110 4.108
2 8000 5.167 4.044

The results of the second series of calibration tests brought the flow-meter measurements
closer to the fuel mass flow rate calculated from the fuel tank mass measurements, but the

error was still significant. After consultation with technicians from Land and Sea, Inc.
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(the manufacturer of DY NOmite™ dynamometers) and Flow Technology™ (makers of
the fuel flow sensor) it was determined volumetric and mass flow rates below the
minimum of the calibrated range for this fuel flow sensor (11.35 cm*min or 0.18 gal/hr
and 8.3 g/min respectively) would be measured inaccurately and imprecisely by the fuel
flow sensor and DY NO-MAX software. It was decided this fuel flow sensor could not be
used to reliably measure fuel flow and calculate fuel consumption. Unfortunately, afuel
flow sensor that could accurately measure these lower flows could not be obtained in
time for this effort. The method of calculating fuel mass flow rate from fuel tank mass
measurements (like that used by Menon [23] [35]) was used for all testing where fuel

consumption was required.

3. [Initial Testing

After calibration tests, initial engine testing was done to gain operational experience
with the dynamometer test setup and data acquisition process using the DY NO-MAX
software. At the outset, the Honda GX 35 engine was setup for testing. The Honda GX35
isshown in Figure 29 as it was mounted to the dynamometer test setup for initial testing.
All aspects of the engine testing system were inspected for proper function using the
establish SOPs. Testing of the servo operating the throttle showed it worked properly.
Fuel flowed from the fuel tank through the fuel flow-meter and into the carburetor
appropriately. The exhaust fan properly ventilated the dynamometer engine enclosure.
The engine cut off switch properly stopped the engine.

Using the original configuration shown in Figure 29, the Honda engine was tested

for approximately ten minutes. Engine throttle was opened and closed and dynamometer

66



loading was varied over the testing period. The data acquisition computer logged datato
the PC and was recorded viaDY NO-MAX software. The DYNO-MAX software
dampened and collated recorded data over the entire test run for plotting purposes.
Surprisingly, torque and power measurements from thisinitial test run had decent
agreement with the manufacturer’sratings. A comparison of the datafrom the initial test
run and the manufacturer’s claimed performance datais shown in Table 14. Initial test
power and torque measurements are plotted in Figure 30.

Table 14: Comparison of initial data and manufacturer claims for the Honda engine

M easurement Initial Test Data Manufacturer Claim
Peak Torque (N-m) 1.383 @ 5800 RPM 1.60 @ 5500 RPM
Peak Torque (Ibf -ft) 1.020 @ 5800 RPM 1.18 @ 5500 RPM

Peak Power (kW) 0.910 @ 7000 RPM 0.97 @ 7000 RPM
Peak Power (hp) 1.221 @ 7000 RPM 1.30 @ 7000 RPM
| W

i

i
L =
) o, T". .

(@) (b)

Figure 29: Honda GX 35 mounted to dynamometer (a.) angled view (b.) side view
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Figure 30: Initial torque and power versus engine speed plot for Honda

Thisinitial mounting configuration caused excessive wear of the belts leading to
premature belt failure. The tension in the belt applied aforce on the sprocket mounted on
the engine shaft causing misalignment due to lack of support on the free end of the
sprocket. A new testing configuration was devised and implemented to support the
engine shaft on both sides of the sprocket on which the belt was seated. A mounted
support bearing was fitted to a block on the free end of the sprocket and alonger engine
shaft extension was fit through the sprocket and into the bearing. The ball bearing was
rated for speeds up to 32000 RPM, which well exceeded the 11000 RPM maximum the
Honda engine was capable of achieving. The bearing’ s load capacity was 450 |bf. The
bearing is shown in Figure 31 and a diagram of the belt-sprocket-bearing configuration is

shown in Figure 32.
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Figure 31: Mounted bearing for engine shaft support [36]

sprocket mounted
on engine shaft
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Figure 32: Engine testing hardware configuration diagram
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Figure 33: Engine testing hardware configuration photograph

The addition of the bearing did not entirely solve the problem of excessive belt ware
and premature belt failure. The bearing only mitigated the problem and allowed for more
tests to be conducted between belt failures. The synchronous timing belts used in testing
were manufactured by Gates Corporation. Initially, belt alignment was blamed for the
failures. Belt technology and alignment literature was investigated to better understand
belt maintenance and failure [37] [38]. A diagram of belt misalignment concern areasis

shown in Figure 34.
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Figure 34: Diagram of common belt misalignment areas [38]

rubber particles

Figure 35: Rubber particles thrown from belt and collected on mounting plate
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Figure 36: Belts suffering complete failure (a.) (b.)

The belt alignment for original testing was done by naked-eye physical inspection by
the author. It was assumed the flexibility in the belt would absorb additional stresses
imposed on the belt because of slight misalignment. During engine testing, minute
rubber particles were found clinging and collecting to dynamometer and engine mounting
hardware after being thrown from the belt (Figure 35). Belt width was less than the
width of the sprockets. The belts were not remaining centered in the sprocket (believed
to be due to misalignment) and drifted to either wall of the sprocket. It was thought the
sprocket walls were causing belt side-wall damage eventually wearing away belt material
causing failure. To combat the failures, misalignment was tackled by the technicians of
the AFIT Model and Fabrication Shop.

The dynamometer setup was brought to the technicians and the various bearings and
spacers were leveled and aligned as best as possible. A tensioner device was fabricated

by the technicians to guide the belt in a groove preventing side-wall damage as well as
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applying variable tension to absorb torque fluctuations and vibration associated with the

single cylinder ICEs being tested. The tensioner devices are shown in Figure 37.

Figure 37: Tensioner devices for engine to dynamometer belts

The test setup alignment and incorporation of the tensioner resulted in the belt
remaining centered on the sprocket and not rubbing the side-wall. The overall ability to
conduct engine testing was improved, however belt failure still occurred frequently after
afew hours of engine testing total. A second type of belt was recommended by the
dynamometer manufacturer. The Poly Chain GT Carbon belts (also made by Gates
Corporation) were described as having higher power rating than the Power Grip belts but
failure still occurred. The synchronous belts used were found to have much less
flexibility than was expected. Flexibility of the belt was hoped would absorb vibration
and torque fluctuations from the single cylinder engines being tested in this effort. The
short-term solution was to have enough spare belts on hand to allow for continued

testing.
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4. Throttle Position Establishment

The ability to adjust throttle position in increments was necessary to generate data

points over the entire engine operating range. The goal was to open and close the throttle

in roughly 10% increments between idle and wide-open throttle (WOT) (100% throttle).

Specific pulse-widths were established using the MT-1 R/C Multiple Tester. These

pulse-widths resulted in specific actuation of the Honda and Fuji-IMVAC

servomechanisms. The author used physical naked-eye inspection to judge how open the

throttle valve was compared to the value of the pulse-width sent from the controller. The

throttle position and pulse-width increments were established through numerous

iterations via a guess, check and revise process. The pulse-width to throttle setting

correspondence is shown in Table 15.

Table 15: Controller pulse-width to throttle position correlation

Pulse-width Honda Throttle Position Pulse-width Fuji-IMVAC Throttle
(us) (% of WOT) (ns) Position (% of WQOT)
1415 idle 1055 idle
1460 10 1145 10
1505 20 1235 20
1550 30 1325 30
1595 40 1415 40
1640 50 1505 50
1685 60 1595 60
1730 70 1685 70
1775 80 1775 80
1820 90 1865 90
1865 100 1910 100
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Figure 38: Honda no-load RPM over time plot for various throttle position settings

Examining the plot in Figure 38, showed that the RPM corresponding to 70%, 80%, 90%
and 100% (or WOT) were crowded and overlapping in the region between 10000 and
10500 RPM. The established pulse-widths approximately dividing throttle position into
10% increments (in the physical degree of throttle valve openness) did not correlate well

into even 10% increments of engine speed between idle and WOT.

5. Honda GX35 Engine Test Results

Testing of the Honda was done before any initial testing of the Fuji engine. First, an
automated dynamometer test using the dynamometer to sweep through engine speed was
initially setup to ensure repeatability of experiment. Essentially, the automated test
consists of the DYNO-MAX software adjusting the load on the engine to vary RPM.

This test required running the engine at more open throttle settings to achieve RPM close
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to maximum of the allowable engine speed range. Starting at high RPM, the software
would increase the load to the engine resulting in areduction in engine speed. However,
proper matching of RPM when switching from manual load control to automated |oad
control was required to not stall the engine and was very difficult and inconsistent to
achieve. The author was unable to ater the default automated load control settings so the

automated test was somewhat of a black-box.
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Figure 39: Honda power and torque versus engine speed (S units)
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Figure 40: Honda power and torque versus engine speed (English units)

It was decided that the automated test would not be used due to difficulties with the
automated test stalling the engine. Power, torque and BSFC measurements needed to
populate the desired performance maps would need to be made by a different method.

M easurements of power, torque and BSFC for use in producing performance maps
were made by selecting a throttle setting, manually applying a set load and running the
engine under those steady conditions for a specific duration of time. Each throttle setting
had eight loadings applied to it and the duration of each test was 2 min. The throttle
settings to be tested would be 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Fuel
tank measurements were taken at 30 sintervals and fuel flow rate was determined using

the same method asin the calibration tests. The process was repeated over all throttle
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settings. The mean value of the power, torque and BSFC measurements and cal cul ations
were used to establish single values representing a single point on the performance map.
The performance map was to contain 64 pointsin total. An example of the datafor the
performance map points for asingle throttle setting is shown in Table 16.

Table 16: Honda power, torque and BSFC values at 50% throttle

Asgge Torque(N-m) | BMEP(kPa) | Power (kW) | BSFC (g/kW-hr)
4500 15373 539 0.7216 394.1
5000 1.3720 481 0.7156 436.0
5500 1.2470 437 0.7184 456.0
6000 11611 407 0.7336 461.3
6500 1.0049 352 0.6841 526.2
7000 0.9198 323 0.6724 574.7
7500 0.7307 256 0.5775 694.0
8000 0.5858 205 0.4935 863.2

Engine testing was only able to produce reliable data for 30%, 40%, 50%, 60%, and
100% throttle. Thus, only a partial performance map was able to be generated. At 70%,
80% and 90% throttle, a consistent engine speed was not able to be maintained when a
consistent load was applied. Why this was happening could not be solved during within
time for this effort. The data for 100% throttle were not included in the performance map
because of the discontinuity caused by the missing datafor 70%, 80%, and 90% throttle.
Also, the engine test at 30% throttle could not produce engine speed of 8000 RPM or
greater so data at 8000 RPM for engine tests at al throttle’ s were left out at well. The
performance map contained 28 points total instead of the originally expected 64 pointsin
total. The performance map of BMEP versus engine speed with plotted contours of

BSFC isshownin Figure 41. The plot shows that the lowest fuel consumption occurred
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near an engine speed of 4500 RPM and a BMEP of around 450 kPa. From the data
points used, actual minimum BSFC for the Honda was found at 60% throttle to be 383.6

g/kW-hr (0.6307 Ibm/hp-hr) at 4500 RPM.
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Figure 41: Honda performance map of BMEP versus engine speed with BSFC contours

The Honda performance map using engine torque instead of BMEP is shown in
Figure 42. This performance map shows that to operate the engine at lower BSFC at a
given engine speed, the engine should tend (for the most part) to have the highest
possi ble torque demand requested of it. To lower BSFC during engine operation at a
given torque, engine speed should generally be minimized. Thistrend does not hold true

at numerous locations between engines speeds of 5000 and 6000 RPM at torque above
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1.00 N-m. Peak torque for the Honda was found at 60% throttle to be 1.5601 N-m at

4500 RPM.
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Figure 42: Honda performance map of torque versus engine speed with BSFC contours

For the Honda, peak power was found at WOT to be 1.0808 kW at 7700 RPM. Figure 43

shows contours of constant power mapped over values of torque and speed. At agiven

engine speed, power increases as torque increases. At a given torque, power increases as

engine speed increases. Thistype of map is useful as a decision add when trying to

operate at minimum power required or used. Figure 44 shows the maximum torque and

maximum power developed by the Honda utilizing information from the performance

map data points. This graph is effectively the plot of the torque and power measured at

60% throttle.
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Figure 43: Honda map of power versus torque and engine speed
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Figure 44: Honda maximum torque and power versus engine speed

The performance map created from engine testing the Honda was provided to Greiser

[11] for incorporation as areference for his HEPS controller. Engine testing of the Fuji

was next.

6. Fuji-IMVAC BF-25EIl Engine Test Results

Testing of the Fuji-IMVAC BF-25EI was found to be more difficult than the testing

of the Honda GX35. Unlike the Honda, the Fuji engine was specifically designed to

power small R/C aircraft. A flange, used to attach propellers to the engine shaft, was

included with the purchase of the Fuji engine. This eliminated the need to design an
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engine flange from scratch like was needed for the Honda. Initially the idle engine speed
of the Fuji was running high. The engine was idling around 6000 RPM. After consulting
with technicians at Fuji-IMVAC and fine adjustment of the low-speed carburetor
adjustment needle the engine idle speed was reduced to 4500 RPM. This 4500 RPM idle
speed was within the 1400 to 9000 RPM range claimed by the engine manufacturer, but
much higher than the 1400 RPM minimum engine speed. The carburetor was examined
for blockages and none were found. Fuel and air lines were examined for |eaks and none
were found. The spark-plug was cleaned and plug gap checked to be set at the
recommended distance of 0.6 mm. In addition to the high idle speed, the Fuji was
difficult to start and rough running. The most critical setback to testing the Fuji was the
engine shaft to dynamometer coupling. Testing the Fuji resulted in belt failure within
minutes. Prior to belt failure, at a set throttle setting, the torque measured by the
dynamometer varied wildly. A consistent torque measurement was unable to be
obtained. The difficulties with the Fuji engine were not resolved in time to produce test
results for this effort. Although engine performance data was not produced from testing
the Fuji, much was learned about its operating characteristics. These lessons learned

were used in the feasibility comparison between the Fuji and the Honda.

7. Comparison of Engine Design and Operating Char acteristics

The overarching rationale of all the objectives of this effort was to determine which
engine would be the most efficient and feasible choice for incorporation into the HEPS
used to power the HE-RPA. Criteriawere developed to compare overall operating and

design characteristics of the Honda and Fuji engines. These characteristics included cost,
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mass, size, engine starting ease, engine noise at idle, ignition system reliability. Each
characteristic had five points available in total to award to either engine. More points
correlated to exhibiting the characteristic in a positive way. For characteristics were
guantitative values could be compared (e.g. cost) points were awarded based on the
multiplicative factor separating the values. For example, if the Honda engine cost $300
and the Fuji engine cost $200, the Honda engine would receive 2 points and the Fuji
engine 3 points. Qualitative characteristics (e.g. engine starting ease) were based on the
opinion of the author and two other colleagues working on engine testing. The results of

the study are shown in Figure 45.
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Figure 45: Engine characteristic comparison bar graph with category contribution

The Honda engine received 17 points and the Fuji 13 points. With no regard to torque,

power and BSFC considerations the Honda engine exhibits better characteristics.
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Although torque, power and BSFC data are very important, how these other engine
characteristics impact the entire RPA and its other systemsis also very important. The
Honda did better in the comparison mostly due to the Honda being 2.7 times cheaper than
the Fuji, displaying less vibration and being easier to start. Achieving a benefit from cost
savings assumes equivalent durability and maintenance schedul e between the engines.
Though durability tests were not conducted, the reduced vibration apparent with the
Honda leads one to believe the durability of the Honda would be on par with the Fuji (if
not better). One of the ideas for operation of the HE-RPA isto shut off the ICE, while
the EM is powering the aircraft alone. The ability to restart the engine easily and reliably
iscritical to successin this scenario. The magneto on the Honda acts as flywheel. The
inertia of the flywheel resists change which steadies the rotation of the engine shaft. The
lack of aflywheel on the Fuji makes it more susceptible to excessive vibration due to
fluctuating torque. The Fuji’s strongest characteristicsin this study were its lesser
volume and mass. The Fuji is 1.5 times less massive and 2.6 times smaller than the
Honda. These characteristics are critically important when considering the main point of

this effort is to determine the engine most fit to be used in asmall HE-RPA.
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V. Conclusionsand Recommendations

1. Conclusions of Research

This research effort successfully tested one I CE to accurately measure engine
performance data. A partial engine performance map was generated for the Honda
engine showing contours of BSFC mapped on BMEP versus engine speed plots. Only
performance parameters found at 30%, 40%, 50%, 60% and 100% throttle were able to
be accurately measured. Only the data found at 30%, 40%, 50% and 60% throttle were
incorporated into the engine performance map. Measured performance data for the
Honda GX 35 corresponded well with the performance data claimed by the manufacturer.
For the Honda, peak power was found at WOT to be 1.0808 kW at 7700 RPM whereas
manufacturer specification was for peak power to be 0.97 kW at 7000 RPM. Concerning
data actually used in the formation of the Honda performance maps, values at 60%
throttle produced peak torque and minimum BSFC. At 60% throttle, peak torque for the
Honda was found to be 1.5601 N-m at 4500 RPM and minimum BSFC for the Honda was
383.6 g/kW:-hr (0.6307 Ibm/hp-hr) at 4500 RPM. Even at 60% throttle, peak torque
nearly matches the manufacturer peak torque claim of 1.6 N-m at 5000 RPM. It is most
likely the manufacturer obtained peak torque and power measurements at WOT.

The Fuji-IMVAC BF-25EI was not successfully tested using the dynamometer test
setup due to repeated belt failure and large fluctuations in torque measurements. No
solution was found in the time available to produce suitable engine test results. However,
lessons learned from the operating characteristics of the Fuji showed it is not the better fit

for incorporation into the HE-RPA and that the Honda GX35 is the better fit.
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2. Recommendationsfor Future Research

The effort provided a good foundation for continued small ICE testing. Also, this
effort, in part, resulted in the construction of a dynamometer test setup that isideal suited
for further EM and HEPS testing. There are a multitude of avenues to take to further
small ICE testing and related research. Suggested ideas for future research are explored
in this section.

e Finishinitially intended tests
First and foremost, the objectives originally presented in this effort should be revisited.
An attempt should be made to resolve the problems that arose in testing of the Fuji-
IMVAC BF-25EI engine. If the operating characteristics of the Fuji cannot be improved
it should not be further considered for use in the HE-RPA. The Honda engine should be
retested to ensure repeatability of the experimental results first found and to compl ete the
engine performance map. Engine testing on Diesel fuel was also not achieved on either
engine. This should be done because of the DoD motivation to ssimplify fuel logistics,
reduce cost and possibly improve performance.

e Different engines

The overall assessment of rated engine power was that Honda GX 35 exceeded the
theorized power required for climb, 0.3679 kW (0.4934 hp), and cruise, 0.2657 kW
(0.356 hp), of the HE-RPA calculated by Hiserote [10]. One of the proposed advantages
of the HEPS is the overall RPA weight reduction from downsizing of the ICE. Thereis
another COTS Honda engine that would provide sufficient power as the ICE component
of the HEPS if manufacturer peak torque and power claims hold true. The Honda GX25

isasmaller version of the Honda GX 35 engine tested in this effort. The Honda GX25
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engine has a displacement of 25 cm® and claims peak power to be 0.72 kW (1.0 hp) at
7000 RPM and peak torgue of 1.0 N-m (0.74 |bf-ft) at 5000 RPM [39]. The Honda GX25
mass is estimated to be 0.45 kg (1.0 Ibm) less than the GX35. It is believed the GX25
will have similar operating characteristics to the GX35, which iswhy it is recommended
that the Honda GX 25 be procured and tested for possible incorporation into the HEPS.

Through collaboration with CLMax Engineering LL C, the author learned of another
small COTSICE for possible use in the HE-RPA. The Subaru Robin EH025 [40] isa
single cylinder four-stroke spark ignition (SI) engine with a displacement of 24.5 cm®,
which is the same displacement as the Fuji-IMVAC BF-25El engine. The Subaru engine
is manufacturer rated peak power output of 0.81 kW (1.1 hp) at 7000 RPM and rated
peak torque of 1.18 N-m (0.87 Ibf-ft) at 5000 RPM. Upon physical inspection of aloaner
Subaru Robin EHO025, the author found the Subaru engine’ s exterior to appear to be
identical to its Fuji-IMVAC BF-25El counterpart. It has be suggested by some in the
hobbyist R/C community, that the Fuji and Subaru share the exact same design but have
internal components of differing quality. The only physically apparent difference
between the Subaru and the Fuji is that the Subaru uses a magneto to power for creating a
spark while the Fuji uses an electronic spark ignition system. Also, the Subaru
recommendation for lubrication is to use SAE 10W-30 engine oil, while the Fuji
recommends SAE 5W-20 engine oil. Examining and comparing manufacturer
specifications reveal ed performance differences between the Fuji and Subaru engines.
The Fuji has claims of higher peak power and peak torque ratings higher than the

equivalently sized Subaru.
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The parent company of Subaru Robin Industrial Engines (the distributer of the
Subaru Robin EH025) and actual manufacturer of Subaru Robin Power Productsis Fuji
Heavy Industries Ltd. of Japan. The author contacted the North American distributor of
Fuji-IMVAC engines and Subaru Robin Industrial Enginesto determine if the companies
equivalently sized engines shared more than just physical similarity. Officials from both
companies responded that they knew of no share of design or parts between the engines.
It is recommended that the Subaru Robin EH025 be procured and tested for possible
incorporation into the HEPS also. However, it isimportant that first the mechanical
system of coupling engine to dynamometer be improved, before different engines are
tested.

e Dynamometer testing repeatability

A series of tests under identical settings could not be precisely conducted when
collecting data measurements used to produce engine performance maps. The inability to
properly use the automated |oading function of the dynamometer was the primary reason
behind failing to repeat identical tests. Fixing the problems with automated testing
should be done. The two main benefits from this would be validation of engine test
results and reducing the time required to conduct engine testing.

e Engineto dynamometer coupling

For dynamometer testing of the engines, the engine shafts were coupled to the
dynamometer using toothed belts made of fiberglass, neoprene, nylon and carbon-fiber
fitted on sprockets. These belts were primarily used because they were recommended
and initially supplied by the dynamometer manufacturer. Unfortunately, engine testing

was significantly impeded by the premature failure of these types of belts. Developing a
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coupling system that avoids frequent belt failure would greatly improve engine testing
capability.

Due to the dynamometer’ s reaction cradle location and setup, a belt system still
remains the best option for engine to dynamometer coupling. A number of belt changes
could be attempted. The increased surface area of awider belt may better absorb the
vibrations. Also, av-belt should be considered for use as they tend to be much more
flexible than synchronous belts. Though av-belt is more susceptible to slippage, it isless
prone to failure from overload, vibration and torque fluctuations. Ultimately, in the
future, further consultation with a belt manufacturer should be attempted, and a belt
design manual [41] should be used to develop a permanent solution to belt failure.

e Fuel flow measurement

Fuel flow measurement was an essential source of datafor calculating and recording
fuel consumption. The supplied fuel flow-meter’ s range of measurement was found to be
insufficient. The flow-meter was unable to accurately measure flows below 1.0 [brm/hr.
The fuel flow-meter was abandoned for use in this effort’s engine testing. Instead, fuel
mass flow was directly found using a scale to measure the fuel mass consumed during
testing. This method was found to be sufficient, but in no way ideal. Using the scale was
cumbersome. Also, taking scale measurements required increasing the duration of
individual engine teststo allow for more fuel mass measurements to better define the fuel
mass flow. Engine testing would be more automated and flexible if an accurate and
precise fuel flow-meter was found and incorporated into the dynamometer test setup.
Similar small ICE testing was done by Wilson [20] and the fuel flow-meter used in that

research produced good results. The fuel flow-meter used by Wilson was aModel 213
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Piston Flow-meter manufactured by Max Machinery, Inc [42]. It issuggested that this
flow-meter be acquired.
e Engineperformance

Engine performance was analyzed for the | CEs tested in this effort using factory
recommended settings. Fuel-air ratios could be adjusted to run the engine leaner or richer
and analyze the engine performance gains or losses. An air mass flow-meter
manufactured by TSI, Inc. [43] was purchased to be used by the dynamometer test setup,
but was unable to be incorporated. Installation of the flow-meter would allow calculation
of actual fuel-air ratio. Also, use of the air mass flow-meter would allow for volumetric
efficiency calculation.

Future research could look into improving performance with after-market
components (carburetor, spark plug, etc.). Also, changesto engine spark-timing similar
to work done by Wilson [20] could be attempted. Developing or incorporating an
electronic ignition system to replace the Honda GX 35’ s magneto is another possible area
for future research. Eliminating the large magneto on the Honda GX 35 would most
likely increase the engine’' s power-to-weight ratio and lead to significant overall RPA
weight reduction when incorporated into an aircraft.

e Engine modeling

At the onset of this effort, the author considered devel oping or implementing models
to represent small 1CE operation and predict engine performance (torque, power, BSFC,
etc.). Developing an engine performance model that would utilize ideal models of
individual engine cycle processes or one that would use more realistic models of fluid-

transfer, combustion, heat-transfer and kinetics was seen as not fitting into the time

91



constraint of thisresearch effort. Thus, the modeling subject was not taken-on, but is
seen as agood areato consider for future research. This engine performance model could
be developed or procured to compare actual test results to predictions. An accurate small
| CE performance model would aid in the engine selection portion of the design process
for aHE-RPA. Thiswould reduce the need to test ssmilar ICEs of larger and smaller
displacement and give insight on to the performance effects of design and operating
variable changes.
e Throttle position

Throttle position establishment using the servo controller was adequate for the
testing involved in this effort but increased throttle position accuracy and precision is
desirable. Attaining the ability to open and close throttle position in finer incrementsis
also desirable. These improvements would lead to greater flexibility in testing engines
over their entire operating range, but more importantly improve the capability of the
HEPS controller. The open-loop controller developed by Greiser [11] must have
confidence in the accuracy of servo actuation’s correspondence to throttle position as
well as fine control as possible. For example, to optimize HEPS performance for a HE-
RPA during a mission segment, the controller should not be limited to selecting 10% or
20% throttle when the optimal engine performance would be attained from 15% throttle.
The use of athrottle position sensor (TPS) would also enhance throttle position accuracy
and precision.

A TPS was ordered to accurately measure throttle valve position regardless of servo
actuation but was not incorporated into engine testing in this effort because of time

constraints. The TPSisa500 Series single ear rotary position sensor manufactured by
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CTS Corporation [44]and is intended for use on small engines. When opening or closing
the throttle valve the TPS data could be used to more accurately establish athrottle
position map to be used by the current open-loop controller design. In the future, the TPS
could be used more effectively by incorporating real-time throttle position data from the
sensor as feedback into a closed-loop controller design.

These recommendations for future research offer awide range of directions for
effortsto go in. Exploring these avenues will lead to improvementsin the ability to test
small ICEs and EMs intended for usein aHEPS for aHE-RPA. Improved testing, will
hopefully lead to lessons learned and data analysis that shed light on how to improve
HEPS performance. All this effort in-turn, would be for achieving the ultimate goal of
building a HEPS for a HE-RPA that is designed for minimum fuel and energy

consumption and maximum efficiency.
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VI. Appendices

1. Appendix A: CEA Output for Fuel Combustion Equilibrium Reactions

Rk S R R S ok R R R S S S R S b o S R R S S R R R b R S kR R T b o O S

NASA- GLENN CHEM CAL EQUI LI BRI UM PROGRAM CEA2, NMAY 21, 2004
BY BONNI E MCBRI DE AND SANFORD GORDON
REFS: NASA RP-1311, PART |, 1994 AND NASA RP-1311, PART II, 1996

R I O O S S O S

probl em phi, eq.ratio=1,
hp p,atmel, t, k=2400
react
fuel =C8H18(L),isooct noles=1 t,c=25
oxi d=Air noles=12.5 t,c=25
out put short

end
THERMODYNAM C EQUI LI BRI UM COVBUSTI ON PROPERTI ES AT ASSI GNED PRESSURES
CASE =
REACTANT MOLES ENERGY TEMP
KJ/ KG MOL K
FUEL C8H18(L), i sooct 1. 0000000 -259160. 000 298. 150
OXI DANT Air 12. 5000000 -125.530 298. 150

O F= 15.13131 %UEL= 6.199125 R EQ RATIO= 1.000000 PHI, EQ RATI O=
1. 000000

THERMODYNAM C PROPERTI ES

P, BAR 1. 0132
T, K 2261. 88
RHO, KGCU M  1.5327-1
H KJ/KG -144. 71
U KJ/KG -805. 79
G KJ/KG -21795.0
S, KJ/ (KOG (K) 9.5718
M (1/n) 28. 448
(dLV/ dLP)t -1. 00302
(dLV/ dLT) p 1. 0895
Cp, KJ/ (KO (K) 2. 2440
GAMVAs 1.1787
SON VEL, M SEC 882. 7
MOLE FRACTI ONS

* Ar 0. 00863
* 00 0.01302
* oo 0.11078
*H 0. 00042
*H2 0.00288
H20 0.13418
*NO 0.00232
*N2 0. 71820
*0 0. 00030
* OH 0.00335
o) 0. 00591

* THERMODYNAM C PROPERTI ES FI TTED TO 20000. K
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Rk S R R O Sk R R R S o S R R S b S R R S Sk b S Rk O R R R o R IR S o S o

NASA- GLENN CHEM CAL EQUI LI BRI UM PROGRAM CEA2, NMAY 21, 2004
BY BONNI E MCBRI DE AND SANFORD GORDON
REFS: NASA RP-1311, PART |, 1994 AND NASA RP-1311, PART II, 1996

Rk I R O O O S

pr obl em phi, eq. ratio=1,
hp p, atn¥l, t, k=2400
react
fuel =Jet-A(L) moles=1 t,c=25
oxi d=Air noles=9 t,c=25
out put short

end
THERMODYNAM C EQUI LI BRI UM COVBUSTI ON PROPERTI ES AT ASSI GNED PRESSURES
CASE =
REACTANT MOLES ENERGY TEMP
KJ/ KG- MOL K
FUEL Jet - A(L) 1. 0000000 - 303403. 000 298. 150
OXI DANT Alr 9. 0000000 -125. 530 298. 150

O F= 14. 66948 9%UEL= 6.381831 R EQ RATIO= 1.000000 PHI, EQ RATI O=
1. 000000

THERMODYNAM C PROPERTI ES

P, BAR 1.0132
T, K 2269. 67
RHO, KECU M  1.5406-1
H KJ/KG -119. 79
U KJ/KG -777. 48
G KJ/KG -21687.0
S, KJ/ (KO (K) 9.5024
M (1/n) 28. 693
(dLV/ dLP) t -1.00315
(dLV/ dLT) p 1. 0932
Cp, KJ/ (KO (K) 2. 2540
GAMVAS 1.1772
SON VEL, M SEC 879. 9
MOLE FRACTI ONS

* Ar 0. 00868
*C0 0.01411
* oOoR 0.11752
*H 0. 00042
*H2 0. 00265
H20 0.12134
*NO 0. 00244
* N2 0.72292
*O 0. 00033
*OH 0. 00333
* R 0. 00627

* THERMODYNAM C PROPERTI ES FI TTED TO 20000. K
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2. Appendix B: Drawingsfor Engine Brackets, Flanges & Mounts
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3. Appendix C: ENY Small Engine & Electric Motor Dynamometer Testing SOPs

DY NOmite Dynamometer Operation —

ISEE A

No

11.

12.
13.

14.
15.

o Ensure TrippLite surge protector/power-strip is plugged into 115V wall electrical outlet

o Ensure TrippLite surge protector/power-strip “Protection” and “Line OK” status LEDs are green
o Check and make sure data acquisition computer is on and not in sleep mode

o Login to computer and open DYNO-MAX software program

o Make sure eddy-current absorber and sprockets are free of debris and that no loose materials are
close enough to become entangled during operation

o Slowly rotate absorber (by hand) to guarantee it is completely free to revolve

o Check data harness connections to data computer/controller and dynamometer sensors (Engine
RPM sensor, Absorber/Load RPM sensor, fuel flow meter, etc.) are secure

o Check that data computer/controller is powered (indicated by lit green LED on the side)

o Check USB connections to data computer/controller and data acquisition computer are secure

o Ensure eddy-current power supply control module isin OFF position and has its power cord
plugged into 115V wall electrical outlet

o Switch eddy-current power supply control module' s load control switch to “Manual (Knob)”
position

o Ensure load knob is turned to “ Zero” position

o Connect 30 Amp “male” plug type power cord from dynamometer to 30 Amp “female” plug
type power cord from eddy-current power supply control module

o Turn eddy-current power supply control module ON when dynamometer is ready for operation
o Operate dynamometer using DY NO-MAX software

Engine Operation —

PR OOO~NOOPRA~WNE

e
W N

B
o 0 h

17.
18.
19.
20.

o Place new PIG® absorbent mats under the engine/dynamometer test stand

o Ensure sprocket-engine flange is securely fastened to engine shaft

o Check engine mounting hardware and fasteners are tight and secure

o Check engine mounting plate is secured to dynamometer reaction cradle

o Ensure Electric Ignition System (EIS) module is connected to afully charged battery

o Check EIS spark plug cover is secured over engine spark plug

o Check EISis securely connected to the engine's crankshaft position sensor

o Ensure that EIS kill switch iswired between battery and EIS

o Check oil level by examining oil pan dip stick to ensure sufficient oil is present in crankcase

o Ensure exhaust and intake/throttle ports are clear of any obstructions

o Check that throttle and choke valves are functioning and can be fully closed and opened viathe
Servos

o Ensure all fuel lines are unobstructed and connections (to fuel filters, carburetor, etc.) aretight
o Make certain exhaust fan is connected to power supply and running by listening for sound of fan
spinning

o Fill fuel tank with fuel to be used (gasoline, JP-8, diesel)

o Check that fuel tubing is secured away from cylinder head and other hot surfaces

o Ensure all other fuel lines are unobstructed and connections (to fuel filters, carburetor, etc.) are
tight

o Place Lexan® shield/cover down over dynamometer test stand

o Operate engine following engine starting procedure guideline

o Run engine until fuel tank is completely empty and engine stops

o Allow sufficient time for the engine to cool before further testing
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